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Empirical Modeling for Glucose Control in Critical Care

and Diabetes
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Empirical Volterra series models of glucose–insulin
behavior were identified from input–output data
provided by a physiologically-based nonlinear patient
model. While completely identified nonlinear Volterra
models provided accurate output prediction, clinical
data limitations constrained the structure of the
Volterra series to linear plus nonlinear diagonal
coefficients. In the absence of measurement noise, the
ability of this structurally constrained model to capture
process dynamics was very good. The addition of
Gaussian distributed measurement noise, having var-
iance 10 mg2/dL2, significantly degraded coefficient
estimates, but projection onto the Laguerre basis (with
subsequent expansion to the Volterra space for
analysis) provided excellent noise-filtering and model
predictions requiring only 164 measurements to identify
121 Volterra coefficients. Linear and nonlinear model
predictive control algorithms were developed from the
identified Volterra models. In the absence of measure-
ment noise, nonlinear control algorithms provided mild
performance enhancement in rejecting a 50 g glucose
challenge. With the addition of measurement noise
matching the above noise characteristics, the benefits
of nonlinear control were lost. The superiority of the
nonlinear empirical model to capture open-loop data
did not translate into closed-loop performance enhance-
ment in the presence of measurement noise. Linear
model predictive control, with the ability to filter noise
effects by proper tuning, provided the best combination
of performance and robustness to uncertainty (both
measurement and model) in this nonlinear case study.
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1. Introduction

Patient survival and recovery in a critical care setting
can be dramatically improved by carefully regulating
plasma glucose concentration [11,16,27,58,59]. The
cause of elevated glucose levels in critical care patients
may be because of changes in insulin sensitivity lead-
ing to systemic resistance [54,59,61,62]. In the case of
critical care patients, the pancreatic �-cells release an
insufficient amount of insulin to maintain normo-
glycemic plasma glucose levels (usually defined in
diabetics as 70–120 mg/dL [6,7]). To counteract this
elevation in plasma glucose concentration, a recent
study evaluated the effect of infusing exogenous
insulin to patients recovering in a critical care setting
[60]. Patients in the intensive treatment arm had their
insulin infusion rates changed at 1–4 h intervals to
maintain glucose in the 80–110 mg/dl range. The
standard treatment arm was dosed with insulin only if
glucose concentrations exceeded 215 mg/dl, and then
glucose was controlled between 180 and 200 mg/dl.
The results were dramatic; glucose control in critical
care provided reductions in patient mortality by 34%,
blood infection by 46% and renal failure by 41%, as
well as a 48% decrease in the number of patients
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spending more than 5 days in the intensive care unit
[59]. Other studies have indicated improvements in
survival [27], clinical outcomes [11], and mortality rate
[16] by controlling glucose concentrations. Currently,
glucose is controlled by adjusting insulin infusion
rates, and these rates are established using a titration
algorithm [58,59]. This means that ICU staff must
periodically measure glucose concentrations, cal-
culate a new insulin infusion rate and set the delivery
pump. An automated closed-loop algorithm, using a
patient-specific model, could reduce the burden on
ICU staff while simultaneously improving glucose
concentration control.

The development and deployment of a closed-loop
glucose control device is one approach to accom-
plishing these potential performance improvements.
This insulin delivery solution would consist of
three primary components: a glucose sensor (a topic
of intense interest, e.g. Refs [4,20,21,28,46,57]); an
insulin delivery mechanism (e.g. Refs [5]); and a
mathematical algorithm for calculating insulin deliv-
ery amounts based on blood glucose measurements
(also a popular research topic). A number of different
mathematical approaches have been employed in
blood glucose control design, such as nonlinear PID
algorithms [56], optimal control theory [13,18,33],
adaptive methods [3,12,52], and model predictive
control [26,34,36,39,42,45]. The focus of the present
work is algorithm development for blood glucose
control, and model-based methods are employed
because theoretically achievable performance scales
directly with model quality [30]. Therefore, the
development of a control-relevant, and clinically-
relevant, model of patient glucose–insulin dynamics
is paramount. Given the breadth of critical care and
diabetic patient characteristics, the patient model
within the algorithm must be easily customizable to
individual patient dynamics. Furthermore, there exist
severe data requirements that limit model construc-
tion, whereby physiologically-based pharmacokinetic/
pharmacodynamic models may not be identifiable.
Hence, the present work develops efficient model
identification techniques, and a corresponding
model-based control algorithm, capable of provid-
ing patient-tailored models and maintaining blood
glucose control within healthy patient bounds.

2. Clinically-Relevant Model

Identification

The model structure used to approximate patient
glucose-insulin dynamics in the present work is the

nonlinear Volterra series, given by:
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HereN is the Volterra model order, hi are the Volterra
kernels and M is the model memory. This discrete-
time, single-input single-output (SISO) model struc-
ture can be used to approximate fading-memory
nonlinear systems where it is assumed that the past
input effects on the output become less significant as
the model memory length, M, is approached.

Identifying the coefficients of a Volterra series
model from patient data requires efficient algorithms
because the amount of clinical data for a given patient
is extremely limited as compared with traditional
chemical process data. However, it is reasonable to
collect a short window of high-fidelity data that will
facilitate model construction, as sampling at 10 min
intervals can be accomplished by clinicians or auto-
mated devices [2,57]. The quality of a model is mea-
sured by prediction error variance, as in Refs [14,43].
This facilitates a decomposition of the Volterra model
along particular model contributions as follows:
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Here L(k) represents the linear term, DNðkÞ represent
the N-th order diagonal terms, ONðkÞ represent the
N-th order off-diagonal terms, SNðkÞ represent the
N-th order sub-diagonal terms, and y(k) and u(k)
are glucose concentration and insulin infusion rate
in deviation form, respectively. Coefficients for
off-diagonals and sub-diagonals are assumed to be
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