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Abstract

The invariant manifold approach is used to explore the dynamics of a nonlinear rotor, by determining the nonlinear normal
modes, constructing a reduced order model and evaluating its performance in the case of response to an initial condition. The
procedure to determine the approximation of the invariant manifolds is discussed and a strategy to retain the speed dependent
effects on the manifolds without solving the eigenvalue problem for each spin speed is presented. The performance of the
reduced system is analysed in function of the spin speed.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

The increasing need of optimized performance of structural systems enhance the importance of the nonlinear effects on
their dynamics. To avoid the use of oversized components in obtaining optimal functioning of their systems, the designers and
analysts began to extend the linear models to incorporate some kind of elements to reproduce the nonlinear peculiarities.

For linear structures the modal analysis technique is one of the most valuable tools and from its results the response of
one structure may be found by solving ordinary differential equations with constant coefficients (Meirovitch, 1996). The key
to this technique is to determine the linear transformation that takes the problem from one space where the description of the
dynamical behavior is complex (in the sense where couplings between coordinates demand special care to solve the system of
differential equations) to another space where the system of differential equations may be readily solved. The modal analysis
allowed the development of reduction techniques that are very well developed nowadays. For rotor-bearing systems, perhaps the
most simple and known reduction is the pseudo-modal method (Lalanne and Ferraris, 1990). This method of reduction retains
the modal base of the system with null speed to describe the motions of the system at several spin speeds, and the reduction is
achieved by retaining the low frequencies modes. Another kind of model reduction is the balanced model reduction (Mohiuddin
et al., 1998).

The techniques mentioned above are well suited for linear systems. In rotor-bearing system there are many sources of
nonlinearities, such as play in bearings, fluid dynamics in journal bearings, contacts between rotor and stator, among others
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Nomenclature

C damping matrix
G gyroscopic matrix
M mass matrix
K stiffness matrix
Γ nonlinear coefficients matrix
x generalized coordinates
α nonlinearity parameter
Ω spin speed

aij , bij coefficients for the approximation of the mani-
fold

c11, c22 elements of the damping matrix
g12, g21 elements of the gyroscopic matrix
m11, m22 elements of the mass matrix
k11, k22 elements of the stiffness matrix
u modal displacement
v modal speed

(Yamamoto and Ishida, 2001; Ehrich, 1992; Vance, 1988). These phenomena lead to nonlinear differential equations of motion
to express the dynamics of the system. Several methods are available, such as perturbation methods, harmonic balance methods,
normal forms and center manifold methods (Nayfeh and Mook, 1979; Nayfeh and Balachandran, 1995; Guckenheimer and
Holmes, 1986; Hsu, 1983a, 1983b; Szemplinska-Stupinicka, 1979, 1990; Yu, 1998; Jézéquel and Lamarque, 1991; Sinou et
al., 2003a, 2003b, 2003c, 2004; Huseyin, 2002; Raghothama and Narayanan, 1999; Cameron and Griffin, 1989; Nelson and
Nataraj, 1989). To try one of the reduction techniques, one approach is to linearize the system near to an equilibrium point.
Clearly, this approach is valid when the vibrations are sufficiently small. In addition, it must be noted that the nonlinearities
may lead to coordinate couplings that makes the linear modal reduction techniques difficult. Specialized methods for creating
reduced models of nonlinear systems are available (Steindl and Troger, 2001), where the reduction is done with the aid of
nonlinear Galerkin method and center manifold reduction.

The concept of nonlinear normal modes of vibration presents a great potential in system modeling and reduction techniques.
Rosenberg’s work (Rosenberg, 1966, 1962) is the cornerstone of the study of nonlinear normal modes. He defined the nonlinear
normal mode for autonomous systems as one synchronous motion with fixed relations between generalized coordinates. In
recent years, many studies explored the notion of nonlinear normal modes and nonlinear natural frequencies (Szemplinska-
Stupinicka, 1979, 1990; Vakakis et al., 1996). The invariant manifold approach (Shaw and Pierre, 1991, 1993) brings the
philosophy of the modal analysis to the nonlinear problems. In this approach a nonlinear normal mode is a motion that takes
place on an invariant manifold that is tangent to the linear modal subspaces at the point of equilibrium. This definition leads to a
nonlinear transformation that relates physical coordinates to nonlinear modal coordinates. The invariant manifold methodology
has one aspect that seems to be very promising when searching for reduced models, since one nonlinear normal mode is
constructed by projecting the other modes over it by means of a nonlinear relationship. These projections contain the nonlinear
effects, and the performance of the reduced model is adapted to weak nonlinearities in virtue of the power series used to obtain
the approximation. This approach allowed the incorporation of the nonlinear effects systematically into real world structures
(Soares and Mazzilli, 2000).

This paper presents a numerical investigation of a nonlinear rotor-bearing system using the invariant manifold based method-
ology. As the solution of the eigenproblem of a rotor is dependent on the spin speed and the cost to search for it is very high
when the dynamics of the system is to be known for several spin speeds, one strategy is presented to allow the determination
of the linear invariant manifolds for several spin speeds based only in a few really calculated ones. By this strategy, a reduced
model is constructed and its performance is evaluated and discussed.

2. The nonlinear normal modes

Consider a gyroscopic system with the following equation of motion:

Mẍ + (C + ΩG)ẋ + Kx + Γ x3∗ = 0 (1)

whereM is the mass matrix (symmetric),K is the stiffness matrix (symmetric),C is the damping matrix (symmetric),G is
the gyroscopic matrix (skew symmetric) andx is the vector of generalized coordinates. The termΓ x3∗

represents a stiffness
type nonlinearity, observing that 3∗ means that the power acts over the elements of the vector andΓ is a diagonal matrix of
coefficients. The matrices are given by

M =
[

m11 0
0 m22

]
, K =

[
k11 0
0 k22

]
, C =

[
c11 0
0 c22

]
,

G =
[

0 −g12
g21 0

]
and Γ =

[
α 0
0 0

]
.

(2)
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