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Abstract

Shakedown static and kinematic theorems are constructed for variable-loaded elastic-plastic hardening bodies in classical
spirit. Prager’s linear kinematic hardening is limited by the initial and ultimate yield surfaces. The theorems indicate that the
shakedown safety of a structure does not depend on the plastic modulus, but onthe initial and ultimate yield stresses. While
the ultimate yield strength determines theunbounded incremental collapse pattern, the initial yield stress is responsible for the
bounded cyclic plasticity collapse modes. Though the usual yield criteria do not bound the hydrostatic part of the stresses, the
restrictions on the hydrostatic stresses are included in a specific way that is appropriate for structures’ safety assessment and for
completeness of general shakedown analysis.
 2004 Elsevier SAS. All rights reserved.
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1. Introduction

An elastic plastic body under variable external loads would shake down if the overall response of the body should converge to
some purely elastic state due to a residual stress field developed inside the body and caused by respective incompatible plastic
deformations with the total amount of plastic work bounded. Otherwise the structure should fail as the plastic deformations
would accumulate unrestrictively or be bounded but vary cyclically and endlessly. Classical shakedown theory for elastic-
perfectly plastic bodies has been formulated in the classical works of Melan (1938), Koiter (1963), and revisited extensively
in Ho (1972), Corradi and Maier (1974), Debordes and Nayroles (1976), Ceradini (1980), König (1987), Pham (1992, 1996,
2001, 2003b), Kamenjarzh (1995). The essential contents of the classical shakedown theory are its dual static and kinematic
theorems, which are path-independent: both theorems determine the shakedown boundary in the loading space under which a
loaded structure should be safe regardless of the loading history, while it should fail if the boundary is allowed to be violated
unlimitedly. The shakedown theorems involve the respective plastic limit theorems as a simpler limiting case, and for many
practical structures under quasistatic loads the safer shakedown limits often coincide with or are lower but not differ much
from the plastic limits. However extended shakedown theorems apply to the much larger class of dynamic loading processes,
which lie outside the framework of plastic limit theorems. Usual yield criteria, including the Mises and Tresca ones, do not
restrict the hydrostatic part of the stresses leading to some singularity in constructing shakedown theorems. For completeness
of shakedown theorems in the general setting, restrictions on the hydrostatic stresses (but not by a real yield condition!), which
are quite natural requirements, should be incorporated appropriately.

Shakedown theory has been developed for elastic plastic hardening solids (Melan, 1938; Maier, 1972; Ponter, 1975;
Mandel, 1976; Zarka and Casier, 1981; König and Siemaszko, 1988; Weichert and Gross-Weege, 1988; Corigliano et al., 1995a;
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Fuschi, 1999; Bodovilleand de Saxce, 2001; Pham and Weichert, 2001; Nguyen and Pham, 2001; Nguyen, 2003). Prager’s
(1959) kinematic hardening appears the simplest law that captures the main features from general behaviour of many practical
elastic-plastic materials while keeping the fine structure of classical mathematical plasticity theory: elasticity, plasticity, hard-
ening, Bauschinger effect, translated yield surface, normality yield rule. It has been observed that the assumption of unlimited
kinematic hardening is unrealistic and makes it impossible to predict failure due to incremental collapse, but only the bounded
cyclic plasticity mode. Hence a saturation ultimate yield surface of perfect plasticity is postulated to limit the hardening and
assumes the role of the initial translated yield surface at the saturation. Thus, the concept of limited linear kinematic harden-
ing has been incorporated into shakedown analysis (Mandel, 1976; Weichert and Gross-Weege, 1988; Polizzotto et al., 1991;
Corigliano et al., 1995a; Pham and Weichert, 2001; Nguyen, 2003). The initial yield stress, which appears to affect the alternat-
ing plasticity collapse mode, should not be taken as the convenient one specified at the amount of plastic deformations of 0.2%,
since the respective failure limit would vary and depend on particular loading processes – from the low cycle to high cycle ones.

Shakedown analysis has been extended further to include large deformations, nonstandard plasticity, viscoplasticity, damage
mechanics, poroplasticity (Polizzotto et al., 1991; Corigliano et al., 1995b; Bodoville and de Saxce, 2001; Maier, 2001; Weichert
and Maier, 2002, etc.), which leads to specific applications. However the extensions should be made often at the expense of
losing certain features and generality of the classical plasticity theory and shakedowntheorems. Without the theorems in Melan–
Koiter sense, which are valid only within certain restrictions, generally in practice one has to check for shakedown of a structure
under specific loading histories implementing numerical incremental analysis.

In this work we derive shakedown static and kinematic theorems for elastic-plastic limited kinematic hardening solids,
strictly following the original approach and spirit of Koiter (1963), Corradi and Maier (1974), Pham and Weichert (2001), Pham
(2003b) with necessary modifications and new constructions. The proof of the static theorem is more refined than that given
in Pham and Weichert (2001), while the complete kinematic theorem is new and constructed in a mathematically-consistent
manner as that of Koiter. In Section 2 we state the mathematical essentials of the limited kinematic hardening plasticity model
necessary for subsequent uses. The shakedown static theorem is presented in Section 3, and the kinematic theorem is constructed
in Section 4. Section 5 discusses specific collapse modes. Last section resumes the main results.

2. Limited linear kinematic hardening plasticity

Let σ e(x, t) denote the (quasistatic ordynamic) stress response of the bodyV (x ∈ V, t ∈ [0, T ]) to external agencies over
a period of time in assumption of itsperfectly elasticbehaviour. We call it a loading process, as the actions of the external
agencies uponV can be expressed explicitly throughσ e. At every pointx ∈ V , the elastic stress responseσ e(x, t) is confined
to aboundedtime-independent domain with prescribed limits in the stress space called a local loading domainLx . As a field
overV , σ e(x, t) belongs to the global loading domainL:

L= {
σ e | σ e(x, t) ∈ Lx, x ∈ V, t ∈ [0, T ]}. (1)

In the spirit of classical shakedown analysis, the bounded loading domainL, not a particular loading processσ e(x, t), is given
a priori. A body said to shake down inL means it shakes down for all possible loading processesσ e(x, t) ∈ L. For a detailed
discussion on the sense of the dynamic stress response taken here, see Pham (1996; 2001), and also the final part of Section 4.

v, ε, e, σ , andεp , ep, εr , er , σ r denote respectively the actual velocity, strain, strain rate, stress, and plastic strain, plastic
strain rate, residual strain, residual strain rate, residual stress fields.ve , εe , ee are the elastic velocity, strain, strain rate fields
corresponding to the elastic stress fieldσ e. We have

e(x, t) = ee + ep + er , ε(x, t) = εe + εp + εr ,

σ (x, t) = σ e + σ r , εr (x, t) = C : σ r , (2)

whereC is the elastic compliance tensor. As bothσ andσ e satisfy generally dynamic equilibrium equations of the problem,
the differenceσ − σ e satisfies the respective dynamic homogeneous equilibrium equations onV :

∇ · (σ − σ e) − m(v̇ − v̇e) = 0 (3)

and homogeneous boundary conditions; Herem is the mass density, the dot over a variable means time derivative.
Prager’s (1959) linear kinematic hardening rule is assumed, which relates the back stressα to the plastic deformationεp

α by

α = Hε
p
α, H > 0, (4)

whereH is the plastic modulus (the current yield stress in simple tension of a bar with longitudinal plastic strainε
p
α is σ i

Y +
3
2Hε

p
α ). The yield surfaceΓα , which envelopes the elasticity domainYα centered atα in the stress space, e.g. for Mises

material, is described by the equation

(σ̄ − α) : (σ̄ − α) = 2/3(σ i
Y )2, (5)
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