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Abstract

Adiabatic heating, due to conversion of plastic work into thermal energy, substantially changes the boundary value
problems in the theory of plastic wave propagation. Besides a systematic review of the subject, the thermal coupling during
plastic wave propagation leading to adiabatic wave trapping is the main subject of this study. Two cases are analyzed, the
adiabatic wave trapping in tension and also in shear. The case of shear is relatively new. The wave trapping by adiabatic
deformation via thermal softening leads to the so called critical impact velocity (CIV). Theory, experiments and numerical
analyses of the CIV in tension and shear is the main part of this paper.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In the late 1940s of the last century von Karman [1-4] and others developed a theory for propagation of
one-dimensional plastic waves in a long bar. It was then demonstrated that if an infinite bar is loaded in
tension by a sufficiently high impact velocity, plastic deformation is concentrated near the impact end of the
bar. The theory was limited to rate independent and isothermal case. However, plastic deformation of
materials is rate and temperature dependent. In this paper a more detailed discussion is offered on theory of
plastic wave propagation with thermal coupling. The adiabatic heating causes usually a material softening
leading to adiabatic wave trapping. Localization of plastic deformation in adiabatic conditions superimposed
on inertia effects (waves) causes that the plastic wave speed reaches zero and the critical impact velocity (CIV)
occurs. It is shown that the CIV can be observed in both tension and shear. The case of shear has been found
and analyzed more recently [5-10].

2. Isothermal propagation of plastic waves (revisited)

Although elastic waves were studied since the beginning of Nineteen Century, for example T.Young in 1807
studied the propagation of elastic strains in a cylindrical bar subjected to tension impact. The theory of plastic
waves was formulated in the mid of Twentieth Century by von Karman and Taylor, [1,3,4]. The unloading
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elastic waves were introduced by Rakhmatulin [11]. The stress waves caused by an impact at the end of a semi-
infinite bar has been analyzed in the case where the impact velocity is high enough to produce plastic
deformation.
Consider a bar extending from x; = —oco to x = 0 and assume that the end at x = 0 is loaded by impact with
a constant velocity V. The stress—strain relation for the material is given in the form o(¢), where ¢ and ¢ are,
respectively, the stress and strain. The o(¢) relation is unique and has a smooth first derivative do/de in the
form of decreasing function of strain. Such assumption leads to the so-called rate-independent theory of
plastic wave propagation. It means that initially the rate effects are neglected. However, in the up-to-date
approach the existence is accepted of one and only one stress—strain relation which may be also a high-strain
rate relation at strain rate say 10°s™!. In addition, the radial contraction of the material, that is contribution
of the radial velocity to the inertia effects is neglected. Under these assumptions, the equation of motion for an
element of a slender bar can be written in the form
O’U _ ) 0*U,
or? ox?

and e=¢.+¢p (1)

in the elastic range Cy = (E/p)l/2 and in the plastic range C,(ep) = (1da/p dsp)1/2. The waves propagate
in the x; direction, U is the displacement in that direction, ¢ is time, Cy is the longitudinal elastic wave
speed in slender rods, and Cp(e,) is the plastic wave speed as a decreasing function of plastic strain &,. In
the elastic range the wave speed is constant, it depends only on the density p and Young’s modulus E.

Since the boundary conditions are Uy = V) ¢ for x; = 0 and U; = 0 for x; = —oo the solution of Eq. (1) is in
the form
Xy
Ui(xy,t) = V()|:Z+( >:| 2)
Cp(ep)
The plastic wave speed has an arbitrary value. The second solution is obtained by putting
do \ /2 X1 X1
=+— Cplep) = =—. 3
(p dsp> R t ®)

In the above analysis presented previously in [1,4] a special case is considered in which the plastic strain is a
function of x;/t but not of x; and ¢ independently.

Since Eq. (1) is a quasi-linear differential equation of the second order, and of the type of the wave equation,
it can be also solved by the method of characteristics [12]. The definition of the characteristic line is (x; is
replaced by x)

dx

—==C 4

- = £C0) @
in the elastic range dx/d¢ = £Cj and in the plastic range dx/df = £Cp(g,). The partial differential equation
(1) satisfied along the characteristic lines due to consistency conditions is

dv = +C(e) de. (5)

Along two sets of characteristics the mass velocities in both elastic and plastic ranges are given by

b= +Coe and ofe,) = + /0 T e de. ©6)

The first relation in (6) occurs along the linear characteristics dx/d¢ = +£Cy. The mass velocity v(¢p) defined by
the second relation in (6), that is in the plastic range, occurs along non-linear characteristics dx/dz = £Cp(ep).
In a more general approach, applied nowadays, the stress—strain relation is assumed at constant strain rate,
typical value ~10°s™!, and the temperature is assumed as the initial temperature. The generalized wave speed
is given by

12
Cylep) = + (1 da) (7)
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