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Abstract

Stability of 2-dof milling is investigated. Stability boundaries are predicted by the zeroth order approximation (ZOA) and the semi-

discretization (SD) methods. While similar for high radial immersions, predictions of the two methods grow considerably different as radial

immersion is decreased. The most prominent difference is an additional type of instability causing periodic chatter which is predicted only by

the SD method. Experiments confirm predictions of the SD method, revealing three principal types of tool motion: periodic chatter-free,

quasi-periodic chatter and periodic chatter, as well as some special chatter cases. Tool deflections recorded during each of these motion types

are studied in detail.
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Keywords: End milling; Stability prediction

1. Introduction

High material removal rates, provided in theory by the

modern machining centers, often cannot be achieved in

practice due to the inherent instability of a cutting process.

In cutting processes which involve rotation of the tool or

workpiece, the instability is caused by the so called

regeneration of surface waviness during successive cuts:

wavy surface left behind by the previous cut influences chip

thickness during the current cut, thereby contributing to the

wavy surface, which in turn influences chip thickness in the

successive cut, etc. The resulting instability is called

regenerative chatter.

Dynamics of regenerative cutting processes can be

described by models in the form of linear delay-differential

equations (DDEs) [1,2]. Chatter-free cutting and chatter

correspond respectively to the linearly stable and unstable

solutions of the model equations. The cutting parameters

that assure stable, chatter-free machining can therefore be

predicted by the linear stability analysis of the equations.

The stability boundary is usually presented in a graph of the

maximal chatter-free depth of cut vs. spindle speed. The

graph is called a stability chart.

For continuous cutting, such as uninterrupted turning, the

model equations are autonomous and the stability boundary

can be given in closed form. The stability boundary has a

typical ‘lobed’ structure, with stability maxima located at

spindle speeds corresponding to the integer fractions of

the eigen-frequencies of the most flexible modes of the

machine–tool–workpiece system. The instability, i.e. the

transition from chatter-free cutting to chatter, corresponds to

the sub-critical Hopf bifurcation [3,4].

For interrupted machining, such as milling and inter-

rupted turning, the cutting force variation is time-periodic.

The resulting model equations are non-autonomous DDEs

for which the linear stability condition cannot be given in

closed form. The stability boundary can be determined

numerically, by time domain simulations [5–7]. While

indispensable for the study of complicated cutting process

models which involve trochoidal tool path, multiple

regeneration effects, non-linear force dependencies, etc.,

the time domain simulations are an inefficient way of
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exploring the parameter space of linear DDEs. The first

analytical attempts at stability prediction of milling were

based on Fourier expansion of the time-periodic force

coefficient [8,9]. The accuracy of the obtained stability

boundary depends on the shape of the cutting force variation

and the number of Fourier terms used to approximate it. For

cutters with a large number of teeth and for substantial

radial immersions, the cutting force varies relatively little so

that reasonably accurate stability predictions can be

achieved by using only the zeroth order Fourier term

[10,11]. However, for cutters with few teeth and for low

radial immersions, prohibitively many Fourier terms may be

needed to capture the cutting force variation. In such cases,

which are quite common in high-speed milling, the exact

stability boundary may differ significantly from the one

predicted by the zeroth order approximation (ZOA).

This discrepancy was first shown for the case of very low

immersion milling, where the time interval of tool–work-

piece contact was a small fraction of the spindle period

[12,13]. Based on a discrete representation of the impact-

like cutting process combined with the exact analytical

solution of the free tool vibration, a time-domain analytical

method for stability prediction was developed which

revealed that there exist two types of instability in milling:

the Hopf bifurcation, which causes the quasi-periodic

chatter, and the period doubling or flip bifurcation, which

causes the periodic chatter. The stability boundary in

milling therefore consists of two sets of lobes corresponding

to the two instability types. In contrast, the ZOA method

predicts only one type of instability, the Hopf bifurcation.

The stability predictions from Refs. [12,13] lose

accuracy as the time of the tool–workpiece contact

increases. Two alternative methods have since been

proposed that can predict stability boundary for an arbitrary

time in the cut. The first method combines the exact

analytical solution of the free tool vibration with the

approximate solution for the tool vibration during cutting

calculated using temporal finite element analysis (TFEA)

[14]. The second method employs the semi-discretization

(SD) scheme to transform the DDE into a series of

autonomous ordinary differential equations (ODEs) for

which the solutions are known [15]. In both methods,

stability is determined by the eigen-values of the transition

matrix which connects the solutions between successive

cuts. The methods have been derived and verified

experimentally using a 1-dof milling system [16,17].

Recently, both methods have also been extended to 2-dof

milling systems [18–20].

In this paper, stability of a 2-dof milling system is

investigated. Stability boundaries are predicted using the

ZOA and SD methods. The ZOA method is briefly reviewed

and the SD method for 2-dof systems is presented. Stability

predictions of the two methods are compared for a series of

radial immersions and verified experimentally on a high-

speed milling center using a long and slender tool. The

recorded tool deflections in the X–Y plane are analyzed in

detail and six different types of tool motion are distin-

guished: three principal types predicted by the SD method

(periodic chatter-free, quasi-periodic and periodic chatter)

as well as three special chatter cases.

2. Stability prediction for end milling

Consider a 2-dof end milling operation shown schema-

tically in Fig. 1. A cutter with a diameter D and N equally

spaced teeth rotates at a constant angular velocity U. The

radial immersion angle of the j-th tooth varies with time as:

fjðtÞZUtC2pðjK1Þ=N. A compliant machine–tool struc-

ture is excited by the tangential (Ft) and radial (Fr)

components of the milling force at the tool tip causing

dynamic response of the structure governed by the

following equation:

M €X ðtÞCC _XðtÞCKXðtÞ Z FðtÞ: (1)

Here, X(t) and F(t) denote the displacement and cutting

force vectors, while M, C and K denote the system mass,

damping and stiffness matrices. For a system with m

vibration modes in X and Y directions, the vectors are 2m!1

and the matrices 2m!2m dimensional. The matrices are

diagonal if the modes in X and Y directions are uncoupled.

The feed (Fx) and normal (Fy) cutting force components

acting on the j-th tooth are given by:

Fx;jðtÞ Z ½KFt;jðtÞ cos fjðtÞKFr;jðtÞ sin fjðtÞ�gjðtÞ;

Fy;jðtÞ Z ½Ft;jðtÞ sin fjðtÞKFr;jðtÞ cos fjðtÞ�gjðtÞ;
(2)

where gj(t) represents a unit step function determining

whether or not the j-th tooth is cutting. The tangential and

radial cutting force components are assumed proportional to

the chip load defined by the chip thickness hj(t) and axial

Fig. 1. Schematic diagram of end milling.
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