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Abstract

In carrying out the statistical linearization procedure to a non-linear system subjected to an external random excitation, a
Gaussian probability distribution is assumed for the system response. If the random excitation is non-Gaussian, however, the
procedure may lead to a large error since the response of bother the original non-linear system and the replacement linear
system are not Gaussian distributed. It is found that in some cases such a system can be transformed to one under parametric
excitations of Gaussian white noises. Then the quasi-linearization procedure, proposed originally for non-linear systems under
both external and parametric excitations of Gaussian white noises, can be applied to these cases. In the procedure, exact
statistical moments of the replacing quasi-linear system are used to calculate the linearization parameters. Since the assumption
of a Gaussian probability distribution is avoided, the accuracy of the approximation method is improved. The approach is
applied to non-linear systems under two types of non-Gaussian excitations: randomized sinusoidal process and polynomials
of a filtered process. Numerical examples are investigated, and the calculated results show that the proposed method has
higher accuracy than the conventional linearization, as compared with the results obtained from Monte Carlo simulations.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The method of statistical linearization has been
widely used in treating non-linear systems under ex-
ternal random excitations[1–6]. In the method, the
original non-linear system is replaced by an equiv-
alent linear system with its linearization coefficients
determined by a statistical criterion, such as the least
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mean-square difference. When carrying out the pro-
cedure, a Gaussian probability distribution is usually
assumed for the system response. The assumption is in
fact another approximation besides the replacement of
the non-linear system since (i) the response of a non-
linear system is generally non-Gaussian even if the
excitation process is Gaussian, and (ii) the response
of the equivalent linear system is also non-Gaussian if
the excitation process is non-Gaussian. To improve the
accuracy, non-Gaussian probability distributions have
been suggested to perform the statistical linearization
for some types of non-linear systems[7–9]. It is found
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that the accuracy is indeed improved if appropriate
non-Gaussian distributions are adopted. However, se-
lection of such a non-Gaussian distribution for a spe-
cific non-linear system is challenging since it is gen-
erally unknown.

It has been found that systems under some types of
non-Gaussian random excitations can be transformed
to the systems under parametric excitations of Gaus-
sian white noises.As a price for the simplification from
non-Gaussian excitations to Gaussian white noises,
the dimension of the system is increased. Neverthe-
less, the advantage of the transformation lies in the
applicability of the quasi-linearization approach pro-
posed in[10] to the new transformed systems. The
quasi-linearization procedure was originally proposed
for non-linear systems subjected to both external and
parametric excitations of Gaussian white noises. In
the procedure, such a non-linear system is replaced
by an equivalent quasi-linear one with the excitation
terms kept unchanged. The coefficients in the quasi-
linear system are determined by using the statistical
moments which can be solved exactly for the replac-
ing quasi-linear system; thus, the assumption of Gaus-
sian distribution for the system response is avoided. In
the present paper, the quasi-linearization approach is
applied to non-linear systems subjected to two types
of non-Gaussian random excitations: randomized si-
nusoidal process and polynomials of filtered process.
The common features of the two cases are (i) the prob-
ability distributions of the excitations as well as of the
system responses may be highly non-Gaussian; (ii) the
excitations can be modeled in terms of Gaussian white
noises. Numerical examples are investigated, and re-
sults obtained from the proposed quasi-linearization,
the conventional linearization, as well as Monte Carlo
simulations are compared.

2. Quasi-linearization

To proceed, a brief review of the quasi-linearization
is first given below, following[10]. Consider a system
governed by the following equations:

Ÿj+hj (Y,Ẏ)=
n∑

i=1

[�jiYiW1i (t)+�ji ẎiW2i (t)]+W3j (t),

(j = 1, 2, . . . , n), (1)

wherehj (Y,Ẏ) is a non-linear function including both
damping and stiffness forces, andW1i (t), W2i (t) and
W3j (t) are Gaussian white noises. The first step in
the quasi-linearization procedure is to replace the non-
linear forces inhj (Y,Ẏ) by linear forces, leading to

Ÿj +
n∑

i=1

(ajiYi + bji Ẏi)

=
n∑

i=1

[�jiYiW1i (t) + �ji ẎiW2i (t)] + W3j (t),

(j = 1, 2, . . . , n). (2)

The system described by (2) is said to be quasi-linear
since the principle of superposition is not applicable
due to the presence of the multiplicative excitations.
Letting Yj = Xj andẎj = Xj+n, a set of Ito stochas-
tic differential equations[11] is derived from (2) as
follows:

dXj = Xj+n dt ,

dXj+n =
2n∑
i=1

CjiXi dt +
n∑

i=1

�ji(X) dBi(t),

(j = 1, 2, . . . , n), (3)

whereBi(t) are unit Wiener processes, andCji and
�ji(X) are derived from (2) by incorporating the
Wong-Zakai correction terms, (see e.g.[12]). It is
known from (2) thatCji are constants in the present
case.

To find the equivalent linear coefficientsaji and
bji in (2), the following mean-square differences are
minimized

E



[
hj (Y,Ẏ) −

n∑
i=1

(ajiYi + bji Ẏi)

]2

 ,

(j = 1, 2, . . . , n) (4)

which leads to

E[XX′]
[

a′
b′
]

= E[Xh′], (5)

where a prime denotes a matrix transposition,
X = {X1 X2 . . . X2n}′, a = [aij ], b = [bij ], and
h = {h1 h2 . . . hn}′. The terms inE[XX′] on the
left-hand side of (5) are the second-order moments of
the state variables. Assuming that functionshj (Y,Ẏ)

are polynomials ofYj andẎj , which is true for many
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