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Abstract

Several deformations of non-linear elastic materials are used to study the implications of the strain energy density function
being dependent only on the .rst strain invariant. Two kinds of results are obtained, those that compare responses with and
without dependence on the second invariant, and those speci.c to materials whose strain energy functions depend only on the
.rst strain invariant. The deformations are (i) homogenous biaxial extension, (ii) shear superposed on triaxial extension, (iii)
in4ation of a circular membrane, (iv) circular shear superimposed on a press .t cylinder, (v) torsion of a circular cylinder.
? 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

There has been recent interest in strain energy
density functions of the form W (I1) for incompress-
ible, isotropic non-linearly elastic materials. Materials
of this class have been referred to as generalized
neo-Hookean materials. Arruda and Boyce [1] de-
veloped a strain energy density function of the form
W (I1) based on the non-Gaussian statistical char-
acterization of a network of molecular chains and
showed that it accounted for limiting chain extensibil-
ity. Beatty [2] showed that a general average-stretch
full-network model has a strain energy density func-
tion of the form W (I1). Gent [3] proposed a phe-
nomenologically based strain energy density function
of the form W (I1) to account for limiting chain ex-
tensibility. Horgan and Saccomandi [4] showed that
Gent model ‘provides a very good qualitative and the
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quantitative approximation’ of models with a molecu-
lar–statistical basis. The Gent model thus represents an
interesting connection between such models and phe-
nomenologically based models. They also considered
a number of problems and compared results obtained
using a Gent model with results obtained with other
generalized neo-Hookean models for limiting chain
extensibility, (see [5] for a study of helical shear and
relevant references). However, the biaxial extension
experiments of Rivlin and Saunders [6] and the torsion
experiments of Penn and Kearsley [7] and McKenna
and Zapas [8] show that the strain energy density
function for rubber also depends on I2. There has been
substantial interest in the basis for the departures from
a theory of rubber elasticity solely based on I1, from
the earlier work of Gumbrell et al. [9] to a recent study
by Wagner [10]. This raises the question ‘what are the
implications, if any, for the stresses and deformations
occurring in structural applications of rubber if the
strain energy density function is independent of I2?’
These implications are explored here for a number

of basic deformations of non-linear elastic materials.
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When attention is limited to a single stress or strain
component as occurs in uniaxial extension or simple
shear, material response can be completely modeled
by a strain energy density function of the form W (I1).
However, when the interest is in the three dimensional
response, such as in the case of biaxial deformations
or the normal stresses accompanying shear, there can
be important diJerences depending on whether or not
the strain energy is independent of I2. In this work,
two kinds of results are presented to illustrate this
point, those that can be used to compare responses
with and without dependence on I2, and those speci.c
to materials with strain energy density functions of the
form W (I1).
Two classes of homogeneous deformations are

discussed in Section 2. For experiments involving
biaxial deformations under plane stress, a condition is
established that can be used to determine whether the
strain energy density function has the form W (I1).
For shear superposed on triaxial extension, the focus
is on the shear modulus, which depends explicitly
on the underlying stretch ratios. A number of results
illustrate the implications for the shear modulus when
the strain energy density function has the form W (I1).
Section 3 considers the in4ation of a circular mem-
brane by lateral pressure. It is shown that when the
strain energy is independent of I2; dW (I1)=dI1 can be
determined using quantities measured directly on the
deformed shape of the membrane. Section 4 discusses
circular shear of a hollow cylinder that has been press
.t between rigid cylindrical supports at its inner and
outer surfaces and bonded to them. Expressions for
the normal stresses on the inner and outer surfaces are
obtained in terms of an arbitrary strain energy density
function. It is shown that the normal stress at the inner
surface is always negative, while its sign at the outer
support depends on the strain energy density func-
tion and the amount of press .t. The in4uence on the
sign of dependence on I2 is made explicit. Section 5
considers torsion. A universal relation between the
twisting moment and the axial force has been recently
established by Horgan and Saccomandi [11] for strain
energy density functions of the form W (I1) and used
to interpret experimental data. An alternate approach
is presented here for the use of this relation along
with additional experimental data on certain rubbers
to show that their strain energy functions do depend
on I2.

2. Homogeneous deformations

Let X and x denote the position vectors of a mate-
rial particle in its reference and current con.gurations,
respectively. The deformation gradient is denoted by
F = 9x=9X, the left Cauchy–Green strain tensor by
B=FFT and its invariants by I1 and I2. If W (I1; I2) is
the strain energy density function for an incompress-
ible, isotropic, non-linear elastic material, the consti-
tutive equation for the stress is

�= −pI + 2W1B − 2W2B−1; (2.1)

where p is the indeterminate scalar arising from the
constraint of incompressibility andW�=9W=9I�. Note
that when W2 = 0, kinematical information contained
in B−1 is eliminated from the constitutive equation.
It is useful to record well known results for uniaxial

extension, simple shear and biaxial extension for later
reference. In uniaxial extension with axial stretch ratio
�, the invariants are

I1 = �2 +
2
�
; I2 = 2�+

1
�2

(2.2)

and the normal stress-axial stretch ratio relation is

� =
(
�2 − 1

�

)(
2W1 +

1
�
2W2

)
: (2.3)

In simple shear, described with respect to a Cartesian
coordinate system by

x1 = X1 + KX2; x2 = X2; x3 = X3; (2.4)

K being the amount of shear, the invariants are

I1 = I2 = 3 + K2 (2.5)

and the shear stress–shear relation is

�12 = (2W1 + 2W2)K: (2.6)

The normal stresses are

�11 + p= 2W1(1 + K2) + 2W2;

�22 + p= 2W1 + 2W2(1 + K2);

�33 + p= 2W1 + 2W2: (2.7)

As seen from (2.2) and (2.5), the tensile modulus
2W1 +�−12W2 depends only on � and the shear mod-
ulus 2W1 + 2W2 depends only on K . In either case, if
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