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Abstract

The application of artificial neural networks (ANNs) in predicting some key properties of steels is discussed in detail. This paper reports on
the effectiveness of three back-propagation artificial neural network models that predict (i) the impact toughness of quenched and tempered
pressure vessel steel exposed to multiple postweld heat treatment (PWHT) cycles, (ii) the hardness of the simulated heat affected zone in
pipeline and tap fitting steels after in-service welding and (iii) the hot ductility and hot strength of various microalloyed steels over the
temperature range for strand or slab straightening in the continuous casting process. Predicted and actual experimental values for each model
are well matched and highlight the success of applying ANNs in predicting mechanical properties. The capability of ANNs in predicting
multiple outputs (hot ductility and hot strength) is also demonstrated.

The sensitivity, which is a measure of the response of an output across the range of an individual input variable, of key input variables
(individual alloys and/or process steps) for each model is shown to be in agreement with findings of both the experimental investigation and
reports in the literature. Although this paper shows that ANNs can be employed for optimizing steel and process design parameters, some
difficulty can arise when inter-relationships exist between input variables. An understanding of the inter-relationships between input variables
is essential for interpreting the sensitivity data and optimizing design parameters. It is argued that artificial neural network models can be
developed that have the capacity to eliminate the need for expensive experimental investigation in areas, such as welding (new and repair),
inspection and testing, and manufacturing processes.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Artificial neural networks (ANNs) are computational net-
works that attempt to simulate the processes that occur in
the human brain and nervous system during pattern recog-
nition, information filtering and functional control[1]. Alter
[2] describes ANNs as systems that recognize patterns based
on the data used to train them, where each training case is
characterized by a set of inputs and a result (output or multi-
ple outputs). The use of these networks to make predictions
of the mechanical properties of materials is a relatively new
concept, but one that has received considerable interest in
recent years. ANNs have been reported to be very effective
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in analysing the tensile properties of welds in power plant
steels[3], the effect of carbon content on the hot strength of
steels[4] and the impact toughness of welds based on com-
mon welding parameters[5].

This paper introduces three different back-propagation
neural network models which can predict the (i) impact
toughness of quenched and tempered steels exposed to var-
ious postweld heat treatment (PWHT) cycles, (ii) simulated
heat affected zone toughness of pipeline steels resulting from
in-service welding and (iii) hot ductility (reduction of area
(ROA)) and hot tensile strength of microalloyed steels. A
back-propagation neural network is the most common type of
neural network and it undergoes its learning phase by calcu-
lating an error between the predicted and actual output. This
ANN incorporates a hidden layer that is used to establish the
inter-relationships between the input variables and their rela-
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tionship with the output to minimize the error between the
actual and predicted output.

The testing of QT steels to qualify them for pressure vessel
use is a time consuming and expensive process. Hence, the
development of a reliable model to predict relevant mechan-
ical properties, such as impact toughness as a function of
alloy content (steel design) and heat treatment conditions
(process parameters), is a worthwhile goal for the pressure
vessel industry. Modelling impact toughness can be difficult
due to the well-known scatter that is associated with Charpy
V notch impact testing. However, ANNs automate the mod-
elling process and this improves the possibility of success.

Accurate prediction of hardness of the heat affected zone
of a weldment as a function of composition and cooling time
can make a valuable contribution to the avoidance of crack-
prone microstructures during in-service welding. The second
model presented in this paper demonstrates the accuracy with
which hardness values can be predicted in simulated HAZ
structures, which in turn can be used to avoid crack-prone
structures (>350 HV). This neural network model incorpo-
rates materials characteristics (chemical composition and
as-received hardness), peak temperature, holding time and
cooling rate as key input variables for predicting hardness.

The third model predicts hot ductility and hot strength
of microalloyed steels based on chemical composition and
treatment conditions. The purpose of this model is to assess
the likelihood of steels developing transverse cracking during

the straightening operation in the continuous casting process.
This model is designed to predict two outputs, and in doing so
it provides an insight of the functional behaviour of artificial
neural networks in cases of multiple outputs.

As well as predicting specific mechanical properties as a
function of process and material parameters, all three models
allow the optimization of these parameters through a sensitiv-
ity analysis of the input variables. Sensitivity is a measure of
the response of output across the entire range of an individual
input variable[6]. In short, the aim of this paper is to underline
the usefulness and effectiveness of artificial neural networks
to predict, with relatively high accuracy, various properties
of steels and discuss the advantages and limitations of ANNs
in steel and process design.

2. Experimental methods

2.1. Artificial neural network modelling

Neuralworks Professional II/Plus Software was used to
build the three back-propagation neural networks. As men-
tioned, the models were designed to predict the: (i) impact
toughness of quenched and tempered steels exposed to
repeated PWHT cycles (Model 1), (ii) simulated HAZ hard-
ness of pipeline and tap fitting steels after in-service welding
(Model 2) and (iii) reduction of area (hot ductility) and hot

Table 1
Input variable data ranges used for the three models

Input variable Model 1 Model 2 Model 3

Minimum value Maximum value Minimum value Maximum value Minimum value Maximum value

Thickness (mm) 11 20
Test typea T L M S
Test temperature −90 20 700 1100
Timeb 0 200 0 2
Coolingc Slow Fast 2 10 100 200
Normalised HV 159 234
%C 0.155 0.180 0.07 0.29 0.155 0.165
%Mn 1.10 1.43 0.44 1.63 0.63 1.23
%S 0.0020 0.0035 0.005 0.024
%Cr 0.016 0.2 0.012 0.31
%B 0.0005 0.0013
%Si 0.005 0.39
%Cu 0.010 0.28
%Ni 0.009 0.1
%Mo 0.005 0.033
%V 0.005 0.06
%P 0.008 0.02
%Ti 0.005 0.021 0.003 0.018
%Al 0.005 0.039 0.027 0.036
%Nb 0.005 0.053 0.001 0.022
%N 0.0021 0.0033

a ‘T’ denotes the direction of rolling is transverse to the length of Charpy sample, ‘L’ denotes the direction of rolling is longitudinal to the length ofCharpy
sample, ‘M’ denotes the samples were melted and solidified in situ to simulate direct casting conditions and ‘S’ denotes the samples were solution treated to
simulate re-heated conventional type cast structures.

b In Model 1 ‘time’ is PWHT time (min) and in Model 2 time is holding time (s) at 1400◦C.
c In Model 1 ‘slow’ is cooling from 570◦C at 250◦C/h to 400◦C and then still air, ‘fast’ cooling is cooling in still air from 570◦C. In Model 2 ‘cooling’ is

t8/5 cooling time (s) and in Model 3 cooling is the cooling rate (◦C/min) of the samples.
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