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Abstract

An enhanced higher order finite-difference time-domain (FDTD) algorithm for the precise analysis of complex 3-D electromagnetic
compatibility (EMC) structures and arbitrary interface material distributions in general curvilinear, skewed and stretching lattices is presented
in this paper. Introducing a systematic topological tessellation, the novel methodology develops a family of robust higher order non-standard
forms, which exactly represent the material properties and significantly suppress the artificial dispersion errors. To handle inherent mesh
deficiencies an enhanced low-pass filtering procedure is implemented, while a consistent class of self-adaptive compact operators ensures
the correct evaluation of electromagnetic components near boundary walls. Moreover, for more involved media interfaces that do not follow
the lines of the grid, a convergent transformation around these discontinuities leads to precise simulations. Therefore, this optimal field-
preserving technique along with suitably tuned perfectly matched layers (PMLs), achieve high levels of accuracy, decrease the required
number of points per wavelength and provide considerable computational savings, as indicated by extensive numerical results addressing 3-D
EMC and hard-to-model material applications.
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1. Introduction

The progressively increasing demands for advanced sim-
ulations of electromagnetic compatibility (EMC) devices
and the reliable materials processing of their complicated
components have lately mandated strict stipulations on mod-
eling and design tools[1–3]. Among existing numerical tech-
niques, the finite-difference time-domain (FDTD) method
has a wide applicability in many areas of research[4]. The
original algorithm is relatively simple in the construction
of the computational lattice, since no mathematically in-
volved formulae are required. However, when solving an
arbitrarily-curved problem via a second-order staircase disci-
pline like the FDTD one, the artificial dispersion mechanisms
place a major restraint to its usage. Also, several strenuous
subwavelength geometries and multi-dimensional material
compositions often prohibit the reliable interpretation of the
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underlying physics. Not to mention that when a field compo-
nent is discontinuous along a curvilinear interface, the FDTD
scheme may exhibit loss of global convergence and stability.
Actually, the prior drawbacks have been the subject of an
ongoing research[5–10], aiming at approaches that offer ac-
ceptable stability.

In this paper, a multi-space 3-D higher order FDTD
methodology—based on generalized non-standard curvilin-
ear operators—is presented for the systematic investiga-
tion of EMC and complex media structures. Using the
language of algebraic topology, the unified framework hosts
a covariant/contravariant flux theory which along with an
appropriately established dual-grid formulation enables the
correct mapping of acutely deformed meshes. This strategy,
by means of a low-pass filtering process, optimizes the over-
all performance and subdues dispersion errors. Moreover, the
resulting higher order FDTD expressions take into account
a sufficiently larger amount of points for spatial derivatives,
instead of the two points employed by the traditional coun-
terparts. To overcome the inevitably widened spatial stencils
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near absorbing or perfectly electric conducting (PEC) bound-
aries, we develop a family of curvilinear compact differ-
encing schemes, while all infinite spaces are terminated by
a modified version of the efficient perfectly matched layer
(PML) [11,12]. For the important case of dissimilar materi-
als, whose interface does not coincide with any of the grid
axes, the algorithm introduces a special transformation com-
bining additional degrees of freedom. This perspective guar-
antees the fulfilment of the proper jump-conditions and the
calculation of precise values for the corresponding constitu-
tive parameters. Numerical results, studying a variety of 3-
D curvilinear EMC applications and problems with diverse
materials, depict the merits of the proposed method, even in
coarse FDTD resolutions or geometric singularities.

2. The generalized higher order curvilinear FDTD
algorithm

When objects of arbitrary curvature and multiple materials
are to be modeled, the FDTD technique exhibits an ill-suited
behavior, mainly, due to the incomplete imposition of con-
tinuity conditions at the interfaces. Unfortunately, to these
errors one must add the lattice dispersion discrepancies in-
trinsic in the low-order schemes. A possible solution could
be the averaging of constitutive parameters at the interfaces.
However, in the case of ambiguous regions such a procedure
is not at all exact or convergent. Actually, the above serious
defects have been the primary motive for the development of
our method, especially in curvilinear grids.

2.1. Construction of the consistent non-standard forms

The essential premise of the higher order (HO) algorithm
resides in the representation of electromagnetic fields via a
new class of 3-D non-standard concepts. Their form is given
by
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whereM is the order of accuracy andq is a variable of the gen-
eral coordinate system (u, v,w) described by its respective
g metrics. Such a differencing rationale ensures that disper-
sion error mechanisms, having the potential to spoil the final
outcomes, are drastically subdued or even completely elim-
inated. On the other hand, parametersRqm andPqm,l achieve
an inherent robustness both in the handling of geometric de-
tails and the right assignment of field quantities to space-time
entities by satisfying the following gauges
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FactorL defines the number of stencils,lδq, along each axis,
which are needed for the accomplishment of a specific accu-
racy with a typical value ofL = 3. The correction function
CS(klδq) ensures the smooth transition from the continuous to
the discrete state. Its argument, depending on wavenumberk,
is selected to handle broadband electromagnetic excitations
with the non-standard concepts. This is conducted by em-
ploying the Fourier transform of the already computed elec-
tric or magnetic vectors at predetermined lattice positions.
The process does not affect the total overhead, whereas its
efficacy increases with the number of prefixed nodes. A pos-
sible choice ofCS could be
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OperatorsD(m)
q,lδq[.], in (1), cover all optimal node arrange-

ments – irrespective of cell shape – leading to very coarse
grids and mutual cancellation of material discrepancies.
Therefore, unlike the common FDTD technique which in-
volves only two mesh points for the calculation of spatial
derivatives, the proposed method concerns a whole set of
nodes. This remark is crucial for body-fitted tessellations
with abrupt geometric attributes like slope discontinuities,
skewness or stretching. An indicativev-directedD(m)

v,lδv[.] is
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Analogous expressions can be extracted towards the remain-
ing u andw directions in the domain.

The aforementioned HO non-standard operators are now
applied to the discretization of spatial and temporal deriva-
tives appearing in Maxwell’s curl equations. In this frame-
work, the generalized forms are established via a series of
parametric relations, depending on the approximation level.
Hence,

spatial differentiator:
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temporal differentiator:

T[f |tu,v,w] = 1

CT (δt)
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with b1 andb2 being specific tuning parameters andCT (δt)
the correction function ofT[.]. It stressed that (6) is applied
everywhere in the domain except absorbing or PEC walls,
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