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Abstract

The gas pressure bulging of metal sheets has become an important forming method. As the bulging process progresses, significant thinning
in the sheet material becomes obvious. A prior knowledge about non-uniform thinning in the product after forming helps the designer in the
selection of initial blank thickness. This paper presents a simple analytical procedure for obtaining the thinning variation of a superplastically
formed Ti alloy spherical dome. The procedure is validated with the existing measured data.
© 2004 Elsevier B.V. All rights reserved.
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Superplastic forming has become a promising processing
technique in manufacturing industry. Several models for su-
perplastic bulge forming have been established. Jovane[1]
has simulated hemispherical shell without considering the
non-uniformity of thickness from apex to periphery. Ragab
[2] has assumed a balanced bi-axial stress state throughout
the dome profiles, which is only correct on the apex of the
dome where the tangential stress is equal to the circumferen-
tial stress. Cornfield and Johnson[3] have taken into account
the effect of strain rate sensitivity index (m) on thickness
with the same balanced bi-axial assumption. At the pole of
the hemispherical dome, the orthogonal stresses are equal,
and the stress state is that of equi-biaxial tensile. At the edge
of the dome, there is a constraint around the periphery, lead-
ing to a plane-strain stress state. Therefore, the stress gradient
in a forming dome causes a more rapid thinning rate at the
pole, and it may be expected that the thinning difference will
accelerate with time, leading to a thickness gradient in the
formed dome. A number of analytical developments have
been made to predict the thinning variation of the superplas-
tically formed spherical domes[4–6]. Cheng[6] suggested
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an empirical relation based on the measured thickness values:

s = sp + (se − sp)

(
l

L

)2

(1)

wheresp andse are the measured thicknesses at the pole and
edge of the dome. ‘l’ is the arc length measured from the
pole towards the edge of the dome where the thickness (s) is
measured.L is the arc length of the dome.

A simple analytical procedure for obtaining the thinning
variation of a superplastically formed spherical dome is pre-
sented, which is validated by comparing the results with
those measured on a superplastically formed Ti alloy spheri-
cal dome. In the present analysis, the following assumptions
are made: the material obeys von Mises’ effective stress and
strain criteria; the volume of the deforming metal remains
constant at any instant of forming; and the flow stress in the
thickness direction is ignored for the deformation in a thin
membrane.

von Mises’ effective stress (σeff ) and effective strain (εeff )
are defined by,

σeff = 1√
2

[(σθ − σm)2 + (σm − σs)
2 + (σs − σθ)2]

1/2
(2)
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εeff =
√

2

3
[(εθ − εm)2 + (εm − εs)

2 + (εs − εθ)2]
1/2

(3)

whereσθ, σm, andσs are the hoop, meridional and thickness
stresses.εθ, εm, andεs are respectively, the corresponding
strains.

The relation between principal stresses and strains is:

εθ = 1

Ep

[
σθ − 1

2
(σm + σs)

]
(4)

εm = 1

Ep

[
σm − 1

2
(σθ + σs)

]
(5)

εs = 1

Ep

[
σs − 1

2
(σθ + σm)

]
(6)

whereEp is the plastic modulus.
The volume of deforming metal remains constant which

implies that

εθ + εm + εs = 0 (7)

The flow stress in the thickness direction is ignored, i.e.,

σs = 0 (8)

UsingEq. (8)in Eqs. (4) and (5), and eliminatingEp, one
can obtain,

σm =
(

2κ + 1

κ + 2

)
σθ (9)

where

κ = εm

εθ

(10)

UsingEqs. (8) and (10)in Eq. (2), one obtains

σeff = βσθ (11)

where

β =
√

3(1+ κ + κ2)

κ + 2
(12)

UsingEqs. (7) and (10)in Eq. (3), one can write

εeff = −γεs (13)

where

γ = 2√
3

√
1 + κ + κ2

κ + 1
(14)

Taking into consideration the symmetry of a preform, let
us consider bulging of one circular membrane with initial die
radius,a. The initial sheet thickness,s0, is assumed to be
small in comparison with the die radius,a (i.e.,s0 � a). The
shape of the forming dome is supposed to be a part of the
sphere with the current radius,ρ. The material is assumed to
be isotropic and incompressible, while flow stress depends
on strain rate and temperature.

Fig. 1. Schematic representation of bulge forming of select.

Let M be some point on the membrane, which at the initial
moment of time (t= 0) belongs to the diameter AB (seeFig. 1).
The envelope is clamped around its periphery andr0 is the
distance between point M and the centre of membrane O. At
some current moment of timet > 0, point M goes to M′, while
point O goes to point O′.

The hoop, meridional and thickness strains at M′ are,

εθ = �n
(ρα

a

)
(15)

εm = �n

(
2πr

2πr0

)
= �n

(
ρα

a

sin φ

φ

)
(16)

εs = �n

(
sφ

s0

)
(17)

wheresφ is the thickness at M′. α is the half angle subtended
by the dome surface at its centre of curvature andφ is the angle
between the symmetry axis and the dome radius, drawing to
the point under consideration.

r = ρ sin φ, (18)

is the distance between M′ and the symmetry axis.
From the proportionality,

ρφ

r0
= ρα

a
(19)

The angle,α can be obtained from

sin α = a

ρ
(20)

Within the limited range of strain rates, the flow stress data
of the material from uniaxial tests can be represented by the
power-law relation:

σ = K(ε̇)m (21)

whereK andm are material constants. ‘m’ in Eq. (21) is
known as the strain rate sensitivity index of the material. The
effective stress and strain obey the power-law relation (21).

UsingEqs. (11)–(17)in the power-law (21), one can obtain

βσθ = K

{
γ

t
�n

(
s0

sφ

)}m

(22)
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