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Abstract

A computational analysis of the longitudinal deformation of continuous fibre reinforced metals is presented. Elastic
and elastic—plastic matrix behaviour are considered. Analytical approaches are confronted with finite element analyses
(FEA) for varying fibre distributions, ranging from single fibre unit cells to complex cells. Analysis of microfields shows
that the main cause for deviation from the equistrain rule of mixtures is a stiffening effect of matrix confinement when
surrounded by touching fibres arranged as “‘rings”. Comparison with FEA shows that Hill’s [J. Mech. Phys. Solids 12
(1964) 199, 213] bounds, although best possible in terms of volume fraction, are of limited value in so far as Hill’s upper
bound lies far above any practical limit for a fibre reinforced material, whereas Hill’s lower bound loses its bounding
property when extended to non-linear behaviour via an incremental scheme. This latter effect can be corrected by
changing slightly Hill’s derivation in a way that preserves the bounding property. Finally, implications are given for the
derivation of in situ matrix flow stress curves from experimental tensile curves on fibre reinforced composites. It is
suggested that linear three-point bounds can in practice be used for this purpose.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Assessing the flow stress or stiffness of a unidi-
rectional fibrous material, in which all phases are
cylindrical (Hashin, 1983), parallel to the fibres
(i.e., in axial loading) is a trivial problem as long as
“engineering precision” is sufficient: the equistrain
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rule-of-mixtures (RoM) applied to the flow stress
or stiffness provides adequate precision. The
underlying reason is that, when the composite is
stressed parallel to aligned fibres, stress and strain
are (i) relatively uniform and (ii) far higher along
the fibres than in other directions. Hence the
average axial stress in each phase roughly equals
that which is measured in a tensile bar of the same
material taken to the same axial strain ¢ as the
composite, i.e.,

o. = Viay + Vro, (1)
with the corollary that, for elastic deformation:

E. = V\E\ + hE, (2)
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where E denotes Young’s modulus, V' the volume
fraction, and subscripts ¢, 1 and 2 stand for the
composite, Phase 1 and Phase 2, respectively. Eq.
(1) and its corollary Eq. (2), adapted when neces-
sary to account for the presence of residual stress
in each phase (due for example to thermal con-
traction mismatch between the phases, see, e.g., de
Silva and Chadwick, 1969; Garmong, 1974; Tyson,
1975), are widely known to provide good de-
scriptors of longitudinal composite deformation.

Occasionally, there may arise the need to obtain
better precision in linking the longitudinal flow
stress of composites with that of its phase con-
stituents. One instance is found with the inverse
problem, namely extracting individual phase flow
properties from the measured composite stress—
strain curve. This has for example been done with
fibre reinforced metals to expose size effects in
metal plasticity (Kelly and Lilholt, 1969; Isaacs
and Mortensen, 1992; Bystricky et al., 1999). This
inverse problem is of interest because, with fibre
reinforced metals stressed along their axis, phase
stresses are relatively uniform in both elastic and
elastoplastic deformation (Hill, 1964a,b; Mulhern
et al., 1967; Dvorak, 1991; Brockenbrough and
Suresh, 1990; Brockenbrough et al., 1991; Bohm
et al., 1993; Bohm and Rammerstorfer, 1994). In
essentially all other configurations (transversely
stressed or laminated fibrous composites, short-
fibre or particulate composites...) the matrix
stress and strain distributions are highly non-uni-
form and triaxial, such that the measured average
stress has less fundamental meaning without a
fully accurate mechanical model (which itself re-
quires knowledge of the in situ phase properties as
its input). The reason why higher precision is then
required is that, when back-calculating the matrix
flow stress from that of a long-fibre composite, the
load borne by the generally very stiff fibres far
exceeds that which is carried by the matrix. The
back-calculated matrix flow stress then results
from the subtraction of two far larger numbers
(Eq. (1)). Even very minor error in Eq. (1) then
causes major uncertainty in the back-calculated
matrix flow curve.

Mechanics-related deviations in the composite
flow stress or modulus from the rule of mixtures
arise from the presence of lateral stresses, them-

selves due to incompatibility in lateral deformation
between the matrix and the reinforcement. In
elastic deformation, this is the case whenever the
Poisson ratio differs between matrix and fibres: the
two phases then exert a mutual constraint on each
other that raises the composite stiffness above the
value predicted by the RoM, such that:

Exy=E.— (NE| + 1hE;) =20 (3)

Hill has derived bounds for the longitudinal stiff-
ness of unidirectional fibrous materials, and hence
for E,, (Hill, 1964a):

AViVa(v — V2)2
Vl/k2+ Vz/k1 + 1/G2
(4)

where v designates the Poisson ratio, G =E/
(2(1 +v)) designates the shear modulus, k = E/
(2(1 4+ v)(1 — 2v)) the plane strain bulk modulus,
and the indices 1 and 2 designate the soft and hard
phase, respectively. The lower bound corresponds
to the longitudinal modulus of an elementary
cylindrical composite consisting of a single fibre of
the stiffer phase with circular section embedded in
a circular cylindrical shell of the more compliant
phase. This simple arrangement yields the same
result as the composite cylinder assemblage (CCA)
proposed by Hashin and Rosen (1964). The upper
bound is constructed by inverting the phase
properties.

The Hill bounds, although tight in absolute
numbers, are relatively slack with regard to the
possible error in ‘“back-calculation” of the flow
stress of a soft matrix. In particular, it is intuitively
clear that the solution for the upper bound is lar-
gely above that of any typical (stiff elastic) fibre
reinforced composite, since it describes a hard
interconnecting matrix with compliant fibres.

More elaborate models can only be constructed
by incorporating information on the spatial
arrangement of the two phases. Higher order
bounds, e.g., Milton (1982), Torquato (1991),
Torquato and Lado (1992) and estimates (Torqu-
ato, 1998) are constructed by incorporating sta-
tistical information on the arrangement of the
phases, ¢.g., on random arrangements of hard fi-
bres in a soft matrix. Three-point bounds are much

ANva(v, — V2)2

<Ea <
Vi/ka +Va/ki +1/G, A
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