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Abstract

A computational analysis of the longitudinal deformation of continuous fibre reinforced metals is presented. Elastic

and elastic–plastic matrix behaviour are considered. Analytical approaches are confronted with finite element analyses

(FEA) for varying fibre distributions, ranging from single fibre unit cells to complex cells. Analysis of microfields shows

that the main cause for deviation from the equistrain rule of mixtures is a stiffening effect of matrix confinement when

surrounded by touching fibres arranged as ‘‘rings’’. Comparison with FEA shows that Hill�s [J. Mech. Phys. Solids 12

(1964) 199, 213] bounds, although best possible in terms of volume fraction, are of limited value in so far as Hill�s upper
bound lies far above any practical limit for a fibre reinforced material, whereas Hill�s lower bound loses its bounding

property when extended to non-linear behaviour via an incremental scheme. This latter effect can be corrected by

changing slightly Hill�s derivation in a way that preserves the bounding property. Finally, implications are given for the

derivation of in situ matrix flow stress curves from experimental tensile curves on fibre reinforced composites. It is

suggested that linear three-point bounds can in practice be used for this purpose.
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1. Introduction

Assessing the flow stress or stiffness of a unidi-

rectional fibrous material, in which all phases are

cylindrical (Hashin, 1983), parallel to the fibres

(i.e., in axial loading) is a trivial problem as long as
‘‘engineering precision’’ is sufficient: the equistrain

rule-of-mixtures (RoM) applied to the flow stress

or stiffness provides adequate precision. The

underlying reason is that, when the composite is

stressed parallel to aligned fibres, stress and strain

are (i) relatively uniform and (ii) far higher along

the fibres than in other directions. Hence the
average axial stress in each phase roughly equals

that which is measured in a tensile bar of the same

material taken to the same axial strain � as the

composite, i.e.,

rc ¼ V1r1 þ V2r2 ð1Þ
with the corollary that, for elastic deformation:

Ec ¼ V1E1 þ V2E2 ð2Þ
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where E denotes Young�s modulus, V the volume

fraction, and subscripts c, 1 and 2 stand for the

composite, Phase 1 and Phase 2, respectively. Eq.

(1) and its corollary Eq. (2), adapted when neces-

sary to account for the presence of residual stress
in each phase (due for example to thermal con-

traction mismatch between the phases, see, e.g., de

Silva and Chadwick, 1969; Garmong, 1974; Tyson,

1975), are widely known to provide good de-

scriptors of longitudinal composite deformation.

Occasionally, there may arise the need to obtain

better precision in linking the longitudinal flow

stress of composites with that of its phase con-
stituents. One instance is found with the inverse

problem, namely extracting individual phase flow

properties from the measured composite stress–

strain curve. This has for example been done with

fibre reinforced metals to expose size effects in

metal plasticity (Kelly and Lilholt, 1969; Isaacs

and Mortensen, 1992; Bystricky et al., 1999). This

inverse problem is of interest because, with fibre
reinforced metals stressed along their axis, phase

stresses are relatively uniform in both elastic and

elastoplastic deformation (Hill, 1964a,b; Mulhern

et al., 1967; Dvorak, 1991; Brockenbrough and

Suresh, 1990; Brockenbrough et al., 1991; B€ohm
et al., 1993; B€ohm and Rammerstorfer, 1994). In

essentially all other configurations (transversely

stressed or laminated fibrous composites, short-
fibre or particulate composites . . .) the matrix

stress and strain distributions are highly non-uni-

form and triaxial, such that the measured average

stress has less fundamental meaning without a

fully accurate mechanical model (which itself re-

quires knowledge of the in situ phase properties as

its input). The reason why higher precision is then

required is that, when back-calculating the matrix
flow stress from that of a long-fibre composite, the

load borne by the generally very stiff fibres far

exceeds that which is carried by the matrix. The

back-calculated matrix flow stress then results

from the subtraction of two far larger numbers

(Eq. (1)). Even very minor error in Eq. (1) then

causes major uncertainty in the back-calculated

matrix flow curve.
Mechanics-related deviations in the composite

flow stress or modulus from the rule of mixtures

arise from the presence of lateral stresses, them-

selves due to incompatibility in lateral deformation

between the matrix and the reinforcement. In

elastic deformation, this is the case whenever the

Poisson ratio differs between matrix and fibres: the

two phases then exert a mutual constraint on each

other that raises the composite stiffness above the
value predicted by the RoM, such that:

EDm � Ec � ðV1E1 þ V2E2ÞP 0 ð3Þ

Hill has derived bounds for the longitudinal stiff-

ness of unidirectional fibrous materials, and hence

for EDm (Hill, 1964a):

4V1V2ðm1 � m2Þ2

V1=k2 þ V2=k1 þ 1=G1

6EDm6
4V1V2ðm1 � m2Þ2

V1=k2 þ V2=k1 þ 1=G2

ð4Þ

where m designates the Poisson ratio, G ¼ E=
ð2ð1þ mÞÞ designates the shear modulus, k ¼ E=
ð2ð1þ mÞð1� 2mÞÞ the plane strain bulk modulus,

and the indices 1 and 2 designate the soft and hard
phase, respectively. The lower bound corresponds

to the longitudinal modulus of an elementary

cylindrical composite consisting of a single fibre of

the stiffer phase with circular section embedded in

a circular cylindrical shell of the more compliant

phase. This simple arrangement yields the same

result as the composite cylinder assemblage (CCA)

proposed by Hashin and Rosen (1964). The upper
bound is constructed by inverting the phase

properties.

The Hill bounds, although tight in absolute

numbers, are relatively slack with regard to the

possible error in ‘‘back-calculation’’ of the flow

stress of a soft matrix. In particular, it is intuitively

clear that the solution for the upper bound is lar-

gely above that of any typical (stiff elastic) fibre
reinforced composite, since it describes a hard

interconnecting matrix with compliant fibres.

More elaborate models can only be constructed

by incorporating information on the spatial

arrangement of the two phases. Higher order

bounds, e.g., Milton (1982), Torquato (1991),

Torquato and Lado (1992) and estimates (Torqu-

ato, 1998) are constructed by incorporating sta-
tistical information on the arrangement of the

phases, e.g., on random arrangements of hard fi-

bres in a soft matrix. Three-point bounds are much
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