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Abstract

The thermodynamic behavior of multicomponent, elastic, crystalline solids is developed, including Euler’s equation,

the Gibbs equation, the Gibbs–Duhem equation, the conditions to be expected at equilibrium including a new

description of stress-deformation behavior, and an extension of the Gibbs phase rule. The predictions of the phase rule

are compared with two types of experimental observations including the ten triple points of water.
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1. Introduction

A simple material is one such that, for a fixed

material particle and a fixed reference configura-

tion, the stress tensor is a functional (function of a

function) of the past history of the deformation

gradient

F � grad z ð1Þ
as well as temperature and composition (Truesdell

and Noll, 1965, p. 60), where the gradient opera-

tion grad is to be performed in the reference con-

figuration. A simple material is called elastic, if

stress depends only on the current value of F
(Truesdell and Noll, 1965, p. 119).

Non-simple materials fall into three categories:

(i) those exhibiting an explicit dependence upon

higher-order gradients, (ii) a dependence upon

more than one material particle (a non-local the-

ory), or (iii) a dependence upon more than one

reference configuration. Rajagopal and Srinivasa

(1998) discuss the deformation of inelastic mate-
rials in this latter context.

A solid has some natural (preferred, stress-free

or undistorted) configuration, deformations from

which are always experimentally detectable. Con-

sequently, all non-orthogonal transformations

from a natural or preferred configuration for a

solid can be detected by experiment (Noll, 1958;

Truesdell and Noll, 1965, p. 81; Truesdell, 1966,
p. 61). For a non-oriented or isotropic solid, all

orthogonal transformations of the natural or

preferred configuration are undetectable experi-

mentally. For an oriented or anisotropic solid,

some orthogonal transformations are undetectable

experimentally (Truesdell and Noll, 1965, p. 82). A

*Corresponding author. Professor of Aerospace Engineer-

ing, of Chemical Engineering, and of Mathematics. Tel.: +1-

979-845-0407; fax: +1-979-845-6051.

E-mail address: slattery@tamu.edu (J.C. Slattery).

0167-6636/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.mechmat.2003.12.009

Mechanics of Materials 37 (2005) 121–141

www.elsevier.com/locate/mechmat

mail to: slattery@tamu.edu


Nomenclature

bAj Helmholtz free energy per unit mass
�Aj Helmholtz free energy per unit volume

C relative right Cauchy–Green strain

tensor defined by (8)

e strain tensor defined in Appendix A

e
ðjÞ
ðiÞ deformed lattice vectors for phase j

defined by (2)bE sum of internal energy and kinetic en-

ergy per unit mass as defined in Eq. (39)
E

ðjÞ
ðiÞ unit lattice vectors in natural (equilib-

rium) configuration for phase j
E

ð0Þ
ðiÞ lattice vectors in natural (equilibrium)

configuration for the parent phase 0 (as

seen in the current frame of reference)

f degrees of freedom

fðAÞ body force per unit mass acting on

species A
f body force per unit mass

FðjÞ deformation gradient in phase j
H displacement gradient defined in

Appendix A

HðjÞ orthogonal transformation for phase j
defined by (3)

I identity tensor

I ðjÞðmnÞ scalar invariants for phase j defined by
(7)

J number of homogeneous chemical

reactions

K number of heterogeneous chemical

reactions

M number of non-zero invariants de-

scribed by (7)

MðAÞ molecular weight of species A
N number of species

p number of phases

pðcÞ number of crystalline phases

P thermodynamic pressure defined by

(15)

Q number of internal, coherent, solid–

solid phase interfaces at which elastic

components of stress exist: in the ab-
sence of deformation, Q ¼ 0

rðA;jÞ rate of production of species A by

homogeneous reaction j

rrðA;kÞ rate of production of species A by het-
erogeneous reaction k

R region occupied by body (because there

is no mass transfer at the boundary, we

do not distinguish between the region

occupied by a body of species A and the

region occupied by the multicomponent

body, the material particles of which

move with the mass-averaged velocity
v)

S bounding surface of bodybS entropy per unit mass

t time

T temperature

T stress tensor

u time rate of change of position follow-

ing a surface point (Slattery, 1999, p.
24); used as displacement in Appendix

AbU internal energy per unit mass

v mass average velocity

vðAÞ velocity of species AbV volume per unit mass

z position vector

zj position of material particle in reference
configuration

ZðAÞ defined by (29)

Ze defined by (38)

Zm defined by (31)

Greek symbols

� dimensionless parameters representing

the disturbance from equilibrium

kðAÞ Lagrangian multiplier

ke Lagrangian multiplier

km Lagrangian multiplier

lðAÞ chemical potential for species A defined

by (16)

lðI;mnÞ defined by (17)
mðA;jÞ stoichiometric coefficient for species A

in homogeneous reaction j: the stoichi-

ometric coefficient is taken to be a

negative number for a reactant, positive

for a product
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