

Available online at www.sciencedirect.com



International Journal of Rock Mechanics and Mining Sciences

International Journal of Rock Mechanics & Mining Sciences 42 (2005) 388-401

www.elsevier.com/locate/ijrmms

## Characterizing the deformation behavior of Tertiary sandstones

M.C. Weng, F.S. Jeng\*, T.H. Huang, M.L. Lin

Department of Civil Engineering, National Taiwan University, Taipei, 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan

Accepted 22 December 2004

## Abstract

Tertiary sandstones possess deformational behavior different from hard rocks, especially the relatively larger amount of volumetric dilation during shearing. Such excess dilation contributes to the increase of crown settlement during tunnel excavation and accounts for several cases of tunnel squeezing within Tertiary sandstones. Therefore, the deformation behavior of Tertiary sandstones sampled from more than 13 formations was studied. To distinguish the volumetric deformation induced by hydrostatic stress or by shear stress as well as to decompose the elastic and the plastic components of strains, special experimental techniques, including pure shear tests and cycles of loading–unloading were applied.

The experimental results reveal that the deformation of Tertiary sandstone exhibits the following characteristics: (1) significant amount of shear dilation, especially elastic shear dilation; (2) non-linear elastic and plastic deformation; (3) plastic deformation occurs prior to the failure state. Furthermore, features of plastic deformation were inferred from experimental results and, as a result, the geometry of plastic potential surface and the hardening rule were accordingly determined. A constitutive model, involving nonlinear elastic/plastic deformation and volumetric deformation induced by shear stress, is proposed. This proposed model simulates the deformational behavior for the shear-dilation-typed rocks reasonably well. Furthermore, tests on the versatility of the proposed model, including varying hydrostatic stress and stress paths, indicate that the proposed model is capable of predicting deformational behavior for various conditions.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: Sandstone; Constitutive model; Deformation; Shear dilation

## 1. Introduction

Tertiary sandstones have a digenetic age of no more than 70 million years and such relatively short rock forming period is insufficient to classify them as hard rocks. For instance, the typical strength of Tertiary sandstones in Taiwan ranges from 10 to 80 MPa [1].

While tunneling through the Tertiary strata, several unsuccessful cases were reported [2]. Difficulties, including severe squeezing and raveling, were encountered during construction of these tunnels. For instance, a crown settlement of 180 cm of a 12.4 m wide highway tunnel passing through a faulted zone of Tertiary formations was reported. A crown settlement ranging

\*Corresponding author. Tel./fax: +886223645734.

E-mail address: fsjeng@ntu.edu.tw (F.S. Jeng).

from 14 to 30 cm occurred in several sections of the tunnels under construction, in which Tertiary sandstone (Mushan Formation) was encountered. The crown settlement in other sandstones' strata is often within several centimeters. Therefore, the deformational characteristics of Tertiary sandstones should be involved while the deformation of a constructing tunnel is analyzed.

When compared to hard rock, it was found that the deformational behavior of Tertiary sandstones is characterized by large amount of nonlinear deformation, shear dilation and plastic deformation prior to the failure state [3–5]. Jeng et al. [6] compared the mechanical properties of sandstone, the uniaxial compressive strength (UCS) and the reduction of strength due to wetting ( $R = UCS_{dry}/UCS_{wet}$ ) with the petrographic features of the 13 sandstones listed in Table 1,

<sup>1365-1609/\$ -</sup> see front matter  $\odot$  2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.ijrmms.2004.12.004

| Nomenclature            |                                                                                                      |                | total shear strain                                                     |
|-------------------------|------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------|
|                         |                                                                                                      | $\gamma_d$     | square of slope of failure envelope F                                  |
| $\alpha_1$              | hardening rule parameter for Cap model                                                               | $\eta_1$       | hardening rule parameter for cap model                                 |
| $\alpha_{ m f}$         | slope of $F_1$                                                                                       | $J_2$          | second deviatoric stress invariant, $J_2 = \frac{1}{2} s_{ij} s_{ji}$  |
| $\alpha_{\rm d}$        | state variable of proposed model                                                                     | $J_{2^{'}}$    | second deviatoric strain invariant, $\tilde{J}_2' =$                   |
| $b_1$                   | elastic constant of proposed model                                                                   |                | $\frac{1}{2}e_{ij}e_{ji}$                                              |
| $b_2$                   | elastic constant of proposed model                                                                   | Κ              | bulk modulus                                                           |
| $b_3$                   | elastic constant of proposed model                                                                   | k <sub>f</sub> | interception of $F_1$                                                  |
| $\beta_1$               | hardening rule parameter for proposed model                                                          | λ              | positive scalar factor of proportionality                              |
| $\beta_2$               | hardening rule parameter for proposed model                                                          | т              | parameter for plastic potential surface                                |
| $\beta_3$               | hardening rule parameter for proposed model                                                          | $\Omega$       | strain energy density function                                         |
| $\beta_4$               | hardening rule parameter for proposed model                                                          | р              | hydrostatic stress $p = \frac{1}{3}I_1 = \frac{1}{3}\sigma_{kk}$ (MPa) |
| CTC                     | conventional triaxial compression test                                                               | PS             | pure shear test                                                        |
| $\mathcal{E}_{ij}$      | second strain tensor                                                                                 | R              | strength reduction ratio = $UCS_{wet}/UCS_{dry}$                       |
| $\epsilon^{e}_{v,p}$    | elastic volume strain induced by hydrostatic                                                         | RTE            | reduced triaxial extension test                                        |
| .,                      | stress                                                                                               | $R_{\rm c}$    | axis ratio defined by Cap model                                        |
| $\varepsilon^{e}_{v,s}$ | elastic volume strain induced by shear stress                                                        | $S_{ij}$       | second deviatoric stress tensor                                        |
| $e_{ij}$                | second deviatoric strain tensor                                                                      | $\sigma_{ij}$  | second stress tensor                                                   |
| $\mathcal{E}_{v}$       | volume strain                                                                                        | Ť              | interception of failure envelope with $I_1$ axis                       |
| dep                     | increment of plastic strain, $d\varepsilon^{p} = \sqrt{d\varepsilon^{p}_{ij} d\varepsilon^{p}_{ij}}$ | UCS            | uniaxial compressive strength (MPa)                                    |
| $F(I_1, J_2)$           | yield surface                                                                                        |                |                                                                        |
| $G(I_1,J_2)$            | plastic potential surface                                                                            | Supersc        | ripts                                                                  |
| G                       | shear modulus                                                                                        |                |                                                                        |
| $G_0$                   | initial shear modulus                                                                                | e              | elastic deformation                                                    |
| γ                       | shear strain, $\gamma = 2\sqrt{J'_2} = \sqrt{2 \cdot e_{ij}e_{ji}}$                                  | р              | plastic deformation                                                    |
| γ <sup>e</sup>          | elastic shear strain                                                                                 | t              | total deformation                                                      |
| $\gamma^{\mathbf{p}}$   | plastic shear strain                                                                                 |                |                                                                        |
|                         |                                                                                                      |                |                                                                        |

| Ta | ble | 1 |
|----|-----|---|
|----|-----|---|

Sandstones of this research

| Formation | Classification<br>(Pettijohn et al., 1987) | Geological<br>age | Sedimentary facies              | Remark                                            |
|-----------|--------------------------------------------|-------------------|---------------------------------|---------------------------------------------------|
| WGS1      | Lithic graywacke                           | Oligocene         | Marine-terrestrial mixed facies |                                                   |
| WGS2      | Lithic graywacke                           | Oligocene         | Marine-terrestrial mixed facies | Apparent preferred orientation                    |
| MS1       | Lithic graywacke                           | Miocene           | Littoral facies                 |                                                   |
| MS2       | Lithic graywacke                           | Miocene           | Littoral facies                 |                                                   |
| MS3       | Lithic graywacke                           | Miocene           | Littoral facies                 | Apparent preferred orientation                    |
| TL1       | Lithic graywacke                           | Miocene           | Marine facies                   |                                                   |
| TL2       | Lithic graywacke                           | Miocene           | Marine facies                   |                                                   |
| ST        | Lithic graywacke                           | Miocene           | Littoral facies                 |                                                   |
| NK        | Lithic graywacke                           | Miocene           | Marine facies                   |                                                   |
| ТК        | Lithic graywacke                           | Miocene           | Littoral facies                 | Apparent preferred orientation                    |
| SFG1      | Quartzwacke                                | Miocene           | Littoral facies                 |                                                   |
| SFG2      | Lithic graywacke                           | Miocene           | Littoral facies                 | Apparent preferred orientation, rich mica content |
| CL        | Lithic graywacke                           | Pliocene          | Littoral facies                 | Rich calcite content                              |

and found that these Tertiary sandstones can be classified in terms of Grain area ratio (GAR) and porosity (*n*), as illustrated in Fig. 1. Two groups of sandstones, termed as *Type A* and *Type B* (with R > 0.5 and  $R \le 0.5$ , respectively), have been identified. Comparing to *Type A*, *Type B* sandstone is characterized by greater degree of deformation (or being "softer") and by having a more significant reduction not only in strength but also in stiffness, as shown in Fig. 2. This characteristic highlights that Type B can be the problematic rock type, which is prone to tunnel squeezing.

This paper explores the deformational behavior of Tertiary sandstones in details. In addition to the abovementioned research results, the work focuses on the following aspects:

1. To characterize the deformational behavior of Tertiary sandstones, including elastic and plastic Download English Version:

https://daneshyari.com/en/article/9716487

Download Persian Version:

https://daneshyari.com/article/9716487

Daneshyari.com