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h i g h l i g h t s

• The AS-algorithm translates votes into seats in a biproportional electoral systems.
• The AS-algorithm is the discrete variant of the iterative proportional fitting procedure (IPF-procedure).
• We provide an L1-analysis of the AS-algorithm.
• In case of divergence the generated sequences have, in contrast to the IPF-procedure, two or more accumulation points.
• In practice the AS-algorithm works fine. In cases of multiple ties it may fail.
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a b s t r a c t

In parliamentary elections biproportional divisor methods translate votes into seats so that for each
district fixed seat contingents are met and that every party receives as many seats as the overall vote
counts reflect. A set of district-divisors and party-divisors ensures that proportionality is respected both
within the districts and within the parties. The divisors can be calculated by means of the Alternate
Scaling algorithm (AS-algorithm). It is the discrete variant of the iterative proportional fitting procedure
(IPF-procedure). The AS-algorithm iteratively generates scaled vote matrices that after rounding alter-
nately fulfill the district-contingents and the party-seats. Thus it defines two sequences: the AS-scaling-
sequence and the AS-seat-sequence. The central question in this paper is: under which conditions does
the AS-algorithm generate a biproportional apportionment? The conjecture of Balinski and Pukelsheim
(2006) is partially proven. We show that if the set of biproportional apportionments does not contain
more than three elements then the AS-algorithm is able to determine it. In the rare event that the
set of biproportional apportionments cannot be determined by the AS-algorithm, the complementary
AS-Tie&Transfer-combination puts things right. Its analysis leads to a constructive proof of necessary and
sufficient conditions for the existence of biproportional apportionments. If these conditions are violated
the sequences generated by the AS-algorithms may have more than two accumulation points. On the
contrary, the IPF-procedure has at most two accumulation points.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

An apportionment method is a mathematical provision to
translate vote counts into seat numbers. The difficulty in the
translation of votes is the determination of integer seat numbers
that are proportional to the votes and that sum up to a given house
size. On the basis of the apportionment problem in the American
House of Representatives the monograph by Balinski and Young
(2001) elucidates different monoproportional methods – mainly
divisor and quota methods – that were in use throughout history.

In numerous parliamentary elections the electoral area is
subdivided into several districts and a single monoproportional
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apportionment does not suffice. For example the election to the
European Parliament takes place in 28 Member States. Here a
monoproportional method is applied in each Member State which
in turn ensures proportionality within the country. However,
proportionality across the entire Union is not achieved. A natural
claim is to secure both proportionality within the districts and
proportionality across the entire electoral area. To this end a
biproportional method secures a two-way proportionality.

A biproportional divisor method was first introduced by Balinski
and Demange (1989a,b). It had its world premiere in 2006 during
the Zurich municipal election (Pukelsheim and Schuhmacher,
2004). Thereafter biproportional systems were applied during
Swiss municipal elections in Schaffhausen 2008, Aarau 2009,
and Zurich 2010, and cantonal elections in Zurich 2007 and
2011, Schaffhausen 2009 and Aargau 2009 (Pukelsheim and
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Table 1
Cantonal elections Zurich 2011. Biproportional divisor method with standard rounding. Votes are divided by its district- and party-divisors. Decimals below.5 are rounded
downwards, decimals above.5 are rounded upwards. The resulting integers display the biproportional apportionment. For example the SVP gained 7 356 votes in the district
of Zürich Kreis 1+2. Divided by the respective divisors the quotient is 7 356/(7 000·1.135) = 0.9. Standard rounding yields one seat. The set of feasible divisors is determined
by the AS-algorithm after 72 steps.
Source: Pukelsheim and Schuhmacher (2011).

SVP
votes

SP votes FDP votes Grüne
votes

glp votes CVP
votes

EVP
votes

BDP
votes

EDU
votes

AL
votes

Distr.
divisor

180 54 35 23 19 19 9 7 6 5 3

Zürich Kr. 1,2 5 7356
0.9–1

11528
1.4–1

7327
0.9–1

5752
0.7–1

4404
0.6–1

1863
0.3–0

574
0.1–0

0 364 0.1–0 939
0.2–0

7000

Zürich Kr. 3,9 12 43229
2.51–3

62846
3.47–3

16278
0.9–1

30034
1.8–2

21426
1.3–1

10762
0.7–1

5448
0.4–0

3561
0.3–0

1525
0.2–0

9990
0.8–1

15200

Zürich Kr. 4,5 5 3503
0.49–0

11620
1.55–2

1851
0.2–0

6287
0.9–1

3806
0.55–1

1131
0.2–0

396
0.1–0

0 110
0.03–0

3997
0.8–1

6300

Zürich
Kr. 6,10

9 25336
1.6–2

46638
2.8–3

18416
1.1–1

23212
1.48–1

18495
1.2–1

6068
0.4–0

3428
0.3–0

2537
0.2–0

1059
0.1–0

6537
0.6–1

14000

Zürich Kr. 7,8 6 13257
1.2–1

18816
1.6–2

15196
1.3–1

12849
1.1–1

9791
0.9–1

3597
0.4–0

1615
0.2–0

1614
0.2–0

388 0.1–0 1929
0.2–0

10000

Zürich
Kr. 11,12

12 45238
3.53–4

46035
3.4–3

13978
1.0–1

18774
1.48–1

15810
1.3–1

10414
0.9–1

5787
0.6–1

3710
0.4–0

2707
0.4–0

3549
0.4–0

11300

Dietikon 11 55351
3.8–4

27477
1.8–2

25552
1.7–2

11641
0.8–1

8798
0.6–1

11970
0.9–1

5835
0.499–0

3036
0.3–0

1770
0.2–0

1838
0.2–0

13000

Affoltern 6 22553
1.53–2

11314
0.7–1

9566
0.6–1

7708
0.53–1

8021
0.6–1

2364
0.2–0

5529
0.47–0

3600
0.4–0

1957
0.2–0

311
0.03–0

13000

Horgen 15 114747
4.49–4

69270
2.6–3

66809
2.495–2

34602
1.4–1

37419
1.502–2

30096
1.3–1

17654
0.9–1

14387
0.9–1

6212
0.4–0

1874
0.1–0

22500

Meilen 13 108013
3.7–4

45805
1.52–2

78678
2.6–3

27687
1.0–1

42106
1.497–1

15133
0.6–1

8284
0.4–0

8997
0.49–0

8385
0.5002–1

1438
0.1–0

25400

Hinwil 12 87214
3.8–4

33077
1.4–1

23732
1.0–1

21943
1.0–1

22578
1.0–1

13890
0.7–1

13391
0.7–1

10313
0.7–1

16079
1.2–1

1455
0.1–0

20000

Uster 16 131223
4.6–5

72078
2.4–2

44655
1.501–2

33690
1.2–1

54143
2.0–2

17558
0.7–1

10546
0.47–0

28127
1.54–2

10376
0.6–1

3181
0.2–0

25000

Pfaeffikon 7 35166
2.3–2

14327
0.9–1

9793
0.6–1

10527
0.7–1

9055
0.6–1

2995
0.2–0

6187
0.51–1

4820
0.49–0

4471
0.498–0

372
0.03–0

13600

Winterthur-
Stadt

13 67083
2.7–3

67232
2.6–3

33605
1.3–1

45258
1.8–2

31774
1.3–1

18625
0.8–1

16519
0.8–1

8143
0.51–1

7136
0.49–0

8233
0.47–0

22000

Winterthur-
Land

7 38482
2.4–2

13294
0.8–1

10734
0.6–1

7994
0.51–1

9847
0.6–1

3768
0.3–0

6354
0.504–1

4292
0.4–0

3228
0.3–0

330
0.03–0

14000

Andelfingen 4 14904
1.9–2

5046
0.6–1

4442
0.53–1

3817
0.49–0

2643
0.3–0

778
0.1–0

998
0.2–0

2527
0.49–0

1226
0.3–0

163
0.03–0

7000

Buelach 17 155561
5.7–6

71493
2.503–3

51130
1.8–2

32137
1.2–1

39438
1.48–1

17222
0.7–1

17081
0.8–1

21598
1.2–1

15889
1.0–1

3016
0.2–0

24000

Dielsdorf 10 66891
4.53–5

22947
1.48–1

15321
1.0–1

12290
0.8–1

14946
1.0–1

6217
0.48–0

3398
0.3–0

3981
0.4–0

7583
0.9–1

546
0.1–0

13000

Party-divisor 1.135 1.19 1.19 1.12 1.107 1 0.9 0.73 0.66 0.8

Schuhmacher, 2011). As an example Table 1 displays vote counts
and the resulting biproportional apportionment for the Zurich
cantonal election in 2011.

We refer to a biproportional apportionment B ∈ Nk×ℓ
0 as the

outcome of a biproportional divisor method. It is calculated given
a vote-matrix V = (vij) ∈ Nk×ℓ

0 , a vector of district-contingents
r = (r1, . . . , rk) ∈ Nk, a vector of party-seats s = (s1, . . . , sℓ) ∈ Nℓ,
and a rounding rule [[·]]. The entries of the vote-matrix represent the
number of votes cast for party i in district j. District-contingents
are generally determined in proportion to the districts’ population
figures. Party-seats are calculated in proportion to the votes cast
across the entire electoral area. The rounding rule serves as a
parameter yielding different biproportional apportionments. Note
that [[x]] , x ∈ Q, is a set containing either one integer or two
integers, thus making it possible to handle ties. The seat-matrix
B is obtained from V by scaling it with some positive vectors
x = (x1, . . . , xk) and y = (y1, . . . , yℓ), such that the scaled
matrix achieves – after rounding – row sums equal to the district-
contingents and column sums equal to the party-seats,

bij ∈

vij/(xiyj)


, bi+ = ri, b+j = sj.

Hence, a biproportional divisor method achieves an assignment
that is proportional to the vote-matrix prior to rounding. However,
the divisors generally differ across districts and parties as in
Table 1. This is inevitable due to inherent rounding effects, different
voter turnout within the districts, and other reasons that result
from the given input vectors r and s. Double-proportionality is
manageable no matter how the district-contingents r and party-
seats s are brought about, whether seat-contingents emerge from
a negotiated political fix (as for European Parliament elections), or
whether party-seats are obtained from a divisormethod or a quota
method.

In Switzerland biproportional apportionments are determined
by the Alternate Scaling algorithm (AS-algorithm). It alternates
between scaling rows and columns of the input vote-matrix V . It
iteratively calculates the AS-scaling-sequence V (t) = (vij(t)), t =

1, 2, etc. A final rounding step is inevitable, as deputies come in
whole numbers. Therefore the AS-algorithm also generates the
AS-seat-sequenceA(t). Although theAS-algorithm is in use in Swiss
electoral offices since 2006 it has never been analyzed in detail.
Balinski and Pukelsheim (2006) conjecture that theAS-algorithm is
effective except for the case of ‘‘especially complicated ties’’. Gaffke
and Pukelsheim (2008b) claim that it is effective ‘‘in all practical
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