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a b s t r a c t

To verify whether a transferable utility game is exact, one has to check a linear inequality for each
exact balanced collection of coalitions. This paper studies the structure and properties of the class of
exact balanced collections. Comparing the definition of exact balanced collections with the definition
of balanced collections, the weight vector of a balanced collection must be positive whereas the weight
vector for an exact balanced collection may contain one negative weight. We investigate minimal exact
balanced collections, and show that only these collections are needed to obtain exactness. The relation
between minimality of an exact balanced collection and uniqueness of the corresponding weight vector
is analyzed. We show how the class of minimal exact balanced collections can be partitioned into three
basic types each of which can be systematically generated.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

One of the most important notions in cooperative game theory
is the core. Introduced by Gillies (1953), the core consists of
all allocations that are both individually and coalitionally stable.
Given an allocation in the core of the game, no coalition has an
incentive to split off. There exist games forwhich such an allocation
does not exist, resulting in an empty core. Bondareva (1963) and
Shapley (1967) showed independently that non-emptiness of the
core is equivalent with balancedness.

A collection of coalitions is balanced if one can find positive
weights for all coalitions in the collection such that every player
is present in coalitions with total weight exactly equal to one.
A game is balanced if for all such collections and all such
weights, the weighted sum of the values of the coalitions does
not exceed the value of the grand coalition. An interpretation is
that the players can distribute one unit of working time among all
coalitions in such a way that for every coalition, all members are
active for an amount of time equal to the coalition’s weight, and in
doing so the players cannot createmore value than byworking one
unit of time in the grand coalition.

The concept of balanced collections has played a major role
in the literature on the nucleolus (Schmeidler, 1969), the pre-
nucleolus (Schmeidler, 1969), and weighted nucleoli (Derks and
Haller, 1999). In particular, it is an important part of the Kohlberg
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condition (Kohlberg, 1971), which is used to check if a given im-
putation is the nucleolus of a given game. Furthermore, balanced
collections are strong tools in proofs on properties and characteri-
zations as is seen in e.g., Derks and Haller (1999).

To verify that the core of a game is non-empty, not all balanced
collections are needed. A balanced collection of coalitions is
minimal, if there does not exist a proper subset that is also
balanced. As it turns out, only minimal balanced collections
have to be considered to ensure non-emptiness of the core. This
greatly reduces the number of constraints to be checked for non-
emptiness of the core. Furthermore, the class of minimal balanced
collections is sharp, in the sense that there exists no subclass of the
class of minimal balanced collections that ensures balancedness of
the game.

A game is exact (Schmeidler, 1972) if for every coalition,
there exists a core element that allocates precisely the value of
the coalition to its members. Therefore in such a core element,
the coalition gets exactly its stand alone value. Many important
applications of cooperative game theory have led to the study of
exact games. Classes of games such as e.g., convex games (Shapley,
1971), risk allocation games with no aggregate uncertainty (Csóka
et al., 2009), convex multi-choice games (Branzei et al., 2009)
and multi-issue allocation games (Calleja et al., 2005) are exact.
Exactness turns out to be equivalent with exact balancedness as
introduced in Csóka et al. (2011). Exact balancedness is similar to
the notion of balancedness, when we allow one of the weights to
be negative.

Regarding exact balancedness, many exact balanced collections
are redundant when verifying the exactness of a game. We show
that onlyminimal exact balanced collections are essential to obtain
exactness. However, it is not possible to use the same approach as
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withminimal balanced collections. This is due to the fact thatwhile
the set of balanced weight vectors is a convex set in which the
extremepoints are theweight vectors correspondingwithminimal
balanced collections, the set of exact balancedweight vectors is not
a convex set.

We show that the class of minimal exact balanced collections
can be partitioned into three types. The first type consists of all
minimal balanced sets. The second type, the class of minimal
subbalanced collections, is formed by all minimal balanced
collections for every proper subgame, to which two coalitions are
added: the grand coalition of the subgame, and the grand coalition
of the original game. The last type, the class of minimal negative
balanced collections, consists of all other minimal exact balanced
collections for which every weight vector has one negative weight.

One of the main results concerns the special structure of the
class of minimal negative balanced collections. We show that
every minimal negative balanced collection can be obtained from
a minimal balanced collection by replacing one coalition, with a
weight strictly smaller than one, by its complement. Moreover, for
every minimal negative balanced collection there exists exactly
one such combination of a minimal balanced collection and a
coalition with a weight strictly smaller than one.

The class of minimal exact balanced collections ensures exact-
ness of the game, but the class can be reduced even further. We
show that only the class of minimal subbalanced collections and
the class of minimal negative balanced collections are needed to
guarantee exactness. So, the class of minimal balanced collections
is redundant.

With respect to the uniqueness of the weights, it is well known
that the class of minimal balanced collections coincides with the
set of balanced collections for which the set of balanced weight
vectors consists of one point. A similar result can be obtained for
minimal exact balanced collections. If the exact balanced weight
vector is unique for a certain exact balanced collection, then this
collection is minimal exact balanced. The other way around is not
true in a strict sense. For two types, minimal balanced andminimal
negative balanced collections, the corresponding weight vector is
unique. For every minimal subbalanced collection however, there
exists more than one exact balanced weight vector but all weight
vectors are related to each other by a linear transformation, and
induce the same constraint on the game.

In the process, we also see how we can systematically and
efficiently generate all minimal exact balanced collections, by
adapting the inductive approach to construct all minimal balanced
collections by Peleg (1965).

Just as balanced collections are not only used to verify the non-
emptiness of the core, but also in characterizing the pre-nucleolus
useful in several results on (variations of) the nucleolus, these
insights in the theoretical structure of exact balanced collections
provide a wider range of techniques to obtain further results on
these solution concepts.

The paper is organized as follows: the subsequent section in-
troduces some notions regarding cooperative game theory, and re-
peats the main results regarding balanced collections. Section 3
contains the definitions of several notions regarding exact bal-
ancedness, and includes the results on the uniqueness of the
weights. Section 4 shows that the class of minimal exact balanced
collections can be partitioned into three easily identifiable types.
Section 5 states that minimal exact balanced collections are suffi-
cient to ensure exactness of the game. Section 6 describes the con-
struction of minimal exact balanced collections.

2. Balancedness

First, we introduce some basic notions regarding cooperative
game theory and balancedness. Given a finite player set N , a
transferable utility game v ∈ TUN is defined by a function v on

the set 2N of all subsets of N assigning to each coalition S ∈ 2N

a value v(S) such that v(∅) = 0. Define N = 2N
\ {∅}, and for

all S ∈ N let eS ∈ RN be such that eSi = 1 if i ∈ S and eSi = 0
otherwise. For a game v ∈ TUN , the core C(v) is defined as the set
of efficient pay-off vectors, for which no coalition has an incentive
to split off:

C(v) =


x ∈ RN

|


i∈N

xi = v(N),

i∈S

xi ≥ v(S) for all S ∈ N


.

To check for non-emptiness of the core, one can use the notion of
balancedness.

Definition 2.1. Let B ⊆ N , B ≠ {N}. A weight vector β ∈ RN

is called balanced on B if βS > 0 for all S ∈ B, βS = 0 for all
S ∉ B and


S∈B βSeS = eN . We denote the set of all balanced

weight vectors onB byΛ+(B). The collectionB is called balanced
if Λ+(B) ≠ ∅. Denote BN for the set of all balanced collections on
player set N , and Λ+

= ∪B∈BN Λ+(B).

In the remainder, we will typically use B and C to denote
balanced collections, and use β and γ to denote their respective
weight vectors.

Example 2.2. Let N = {1, 2}. The collections {{1}} and {{2}}
are not balanced, since one of the players is not present in the
collection. By definition {{1, 2}} is not balanced. The collection
{{1}, {1, 2}} is not balanced. This follows as a balanced weight vec-
tor β cannot satisfy the equations β{1,2} = 1 and β{1} + β{1,2} = 1
simultaneously, since β{1} > 0. A similar reasoning holds for the
collection {{2}, {1, 2}}. The two remaining collections are B =

{{1}, {2}} and C = {{1}, {2}, {1, 2}}, which are both balanced.
Take β ∈ Λ+ such that β{1} = β{2} = 1 and βS = 0 for
S ∈ N \ {{1}, {2}}, and take γ ∈ Λ+ such that γ{1,2} = 1 and
γS = 0 for S ∈ N \ {{1, 2}}. We have Λ+(B) = {β} while
Λ+(C) = {aβ + (1 − a)γ | a ∈ (0, 1)}. �

Now, for a vector β ∈ RN , we define the set

V (β) =


v ∈ TUN

|


S∈N

βSv(S) ≤ v(N)


of transferable utility games for which the weighted sum of the
values of the coalitions with respect to β is less than or equal
to the worth of the grand coalition. Also, we define V+(B) =

∩β∈Λ+(B) V (β) and V+
= ∩B∈BN V+(B). So, V+(B) is the set of

games that satisfy the constraints imposed by all balanced weight
vectors for collection B, and V+ is the set of games that satisfy the
constraints imposed by all balanced weight vectors.

Consider some B ∈ BN . Note that v ∈ V (β) for some β ∈

Λ+(B) does not imply that v ∈ V+(B). This is illustrated by the
following example.

Example 2.3. Consider a three person game v ∈ TUN such that
v({1}) = 2, v({1, 2}) = 8, v({1, 3}) = 8, v({2, 3}) = 4 and
v(N) = 8. We find that the balanced collection B = {{1}, {1, 2},
{1, 3}, {2, 3}} corresponds with more than one balanced weight
vector, for instance β = ( 1

2 ,
1
4 ,

1
4 ,

3
4 ) and γ = ( 1

4 ,
3
8 ,

3
8 ,

5
8 ). We

have that
S∈B

βSv(S) =
1
2
v({1}) +

1
4
v({1, 2}) +

1
4
v({1, 3}) +

3
4
v({2, 3})

= 8 = v(N),

but
S∈B

γSv(S) =
1
4
v({1}) +

3
8
v({1, 2}) +

3
8
v({1, 3}) +

5
8
v({2, 3})

= 9 > v(N).

So, v ∈ V (β) but v ∉ V (γ ). This implies that v ∉ V+(B). �
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