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• Paper surveys work on the adjudication of conflicting claims since Thomson (2003).
• The bulk of the survey is on the axiomatic approach, as most of the recent work has been along axiomatic lines.
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a b s t r a c t

A group of agents have claims on a resource but there is not enough of it to honor all of the claims. How
should it be divided? A group of agents decide to undertake a public project that they can jointly afford.
How much should each of them contribute? This essay is an update of Thomson (2003), a survey of the
literature devoted to the study of such problems.

© 2015 Published by Elsevier B.V.

1. Introduction

A group of agents have claims on a resource, but there is not
enough of it to honor all of the claims. Howshould it be divided?Al-
though societies have had to deal with situations of this type since
time immemorial, their formal study began in earnest with O’Neill
(1982). O’Neill describes a number of fascinating historical exam-
ples dating to antiquity and medieval times, together with the
resolutions proposed for them at that time. He suggests a math-
ematical representation of the problem of how to adjudicate con-
flicting claims, develops several methods to handle it, axiomatic
and game-theoretic, and applies these methods to derive a num-
ber of rules. A survey covering the literature that this seminal paper
generated is Thomson (2003), hereafter referred to as T2003.1

The model has other interpretations. It covers in particular the
problem faced by a group of agents undertaking a public project
and having to decide how much each of them should contribute
(hence the reference to taxation in our title), but for simplicity, we
will use language that pertains to the adjudication of conflicting
claims.

It is remarkable how quickly the literature developed. An
important reason is undoubtedly that researchers could take

E-mail address:wth2@mail.rochester.edu.
1 Pedagogical expositions are by Malkevitch (0000, 2008, 2009).

advantage of the conceptual apparatus and of the techniques de-
veloped in other branches of the axiomatics of resource allocation.
The study of how to adjudicate conflicting claims is quite reward-
ing, and it has a unique place in this program. Indeed, the model
is one for which many interesting rules can easily be defined. Also,
several central requirements that are often too strong to be met in
other contexts are satisfied by many rules here.

The field has kept growing. Since the publication of T2003, a
number of gapswere closed. The implications of various axiom sys-
tems are much better understood today and new axiomatic per-
spectives have been explored. Particularly significant are advances
in the study of consistency and of the distributional implications
of rules. Also, O’Neill’s model has been enriched in a variety of
ways. Thus, an update appeared useful. We take up in turn each
of the topics covered in T2003, and in each case, we describe what
we have learned in the last twelve years. We also indicate new
trends.

Section 2 introduces the model and the rules that have come
up in its analysis. Section 3 reports on the progress made on the
axiomatic front. Section 4 focuses on its game-theoretic modeling,
both cooperative and strategic. Section 5 discusses experimental
work. Section 6 presents the various ways in which O’Neill’s
model has been adapted to accommodate broader classes of
environments.We have also updated the references of a number of
papers that we had discussed in T2003 butwere not yet published.
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Fig. 1. Paths of awards of four central rules. Typical paths for N ≡ {1, 2} and c ∈ RN
+
. (a) Proportional rule. (b) Constrained equal awards rule. (c) Constrained equal

losses rule. (d) Concede-and-divide.

2. The base model of adjudication of conflicting claims and an
inventory of rules

The notation and most of the language we use are as in T2003,
except for a few terms, which we have replaced by ones that we
feel are more informative. We keep the overlap with T2003 to
the minimum necessary for a self-contained exposition. Readers
familiar with the literature can skip this section, devoted to basic
definitions.

2.1. The model

In order to distinguish the model introduced by O’Neill (1982)
from the enriched models that have been formulated recently
(Section 6), we refer to it as the base model. It is as follows. Let
N ≡ {1, . . . , n} be a set of claimants. Each claimant i ∈ N has
a claim ci ∈ R+ on an endowment E ∈ R+. The endowment is
insufficient to honor all of the claims. Altogether, a claims problem,
or simply a problem, is a pair (c, E) ∈ RN

+
×R+ such that


ci ≥ E.

Let CN be the class of all problems. An awards vector of (c, E) is
a vector x ∈ RN satisfying non-negativity (no claimant should be
asked to pay: x = 0), claims boundedness (no claimant should be
awarded more than his claim: x 5 c), and balance (the sum of the
awards should be equal to the endowment:


xi = E). A rule is

a function that associates with each (c, E) ∈ CN a unique awards
vector of (c, E). Our generic notation for a rule is the letter S. The
path of awards of a rule for the claims vector c is the locus of the
choice it makes as the endowment ranges from 0 to


ci.

We will also consider the generalization of the model obtained
by letting the population of claimants vary. Then, there is an
infinite set of potential claimants, indexed by the natural numbers,
N. In each problem, only finitely many of them are present
however. Let N be the family of all finite subsets of N. Still using
the notation CN for the class of problems with claimant set N , a
rule is now defined on


N∈N CN : it associates with each N ∈ N

and each (c, E) ∈ CN , an awards vector of (c, E).
Given a, b ∈ RN , seg[a, b] denotes the segment connecting

these two points.

2.2. Rules

All of the following rules will come up at some point. We define
them for a fixedN . Let (c, E) ∈ CN . It will simplify some definitions
to assume that no two claims are equal. The adjustments necessary
to cover possible equality of claims are straightforward. The first
four definitions are illustrated in Fig. 1.

For the proportional rule, P , (Aristotle and Thompson, 1985),
for each i ∈ N , claimant i’s award is λci, λ being chosen, as in the
next two definitions, so that awards add up to E.

For the constrained equal awards rule, CEA, (Maimonides,
12thCentury, 2000) claimant i’s award ismin{ci, λ}. An algorithmic

definition will be useful, keeping c ∈ RN
+

fixed and letting the
endowment grow from 0 to


cj. At first, equal division takes

place until each claimant receives an amount equal to the smallest
claim. The smallest claimant drops out, and we divide the next
increments in the endowment equally among the others until each
of them receives an amount equal to the second smallest claim. The
second smallest claimant drops out, and so on.

For the constrained equal losses rule, CEL, (Maimonides, 12th
Century, 2000) claimant i’s award is max{ci − λ, 0}. A symmetric
algorithm to that underlying the constrained equal awards rule can
be defined. Let c ∈ RN . This time we let the endowment decrease
from


cj – then each claimant is fully compensated – to 0. At first,

we impose equal losses on all claimants until their common loss is
equal to the smallest claim. The smallest claimant receives 0 then,
and he drops out. As the endowment continues to decrease, we
maintain equality of losses for the others until their common loss
is equal to the second smallest claim. The second smallest claimant
drops out, and so on.

Concede-and-divide (Aumann andMaschler, 1985) is the two-
claimant rule that first assigns to each claimant the difference
between the endowment and the other agent’s claim (or 0 if this
difference is negative), and divides the remainder equally.

The Talmud rule, T , (Aumann andMaschler, 1985) is a hybrid of
the constrained equal awards and constrained equal losses rules:
it selects CEA( c

2 , E) if E ≤


ci

2 , and c
2 +CEL( c

2 , E−


ci

2 ) otherwise.
An algorithm producing it is obtained by applying in succession
the algorithms generating the constrained equal awards and
constrained equal losses rules, but using as switchpoints the half-
claims instead of the claims themselves. For |N| = 2, the Talmud
rule coincides with concede-and-divide. The reverse Talmud rule
(Chun et al., 2001) is derived from this definition by exchanging
the roles played by the constrained equal awards and constrained
equal losses rules. For |N| = 2, we obtain reverse concede-and-
divide.2

Letting once again the endowment grow from 0 to


ci, the
constrained egalitarian rule (Chun et al., 2001) selects CEA( c

2 , E)

until the endowment reaches


ci
2 . We assign the next increments

to the smallest claimant until he receives the maximum of his
claim and half of the second smallest claim. We divide the next
increments equally between the two smallest claimants until the
smallest claimant receives his claim, in which case the second
smallest claimant receives each additional unit until he receives
the maximum of his claim and half of the third smallest claim, or
they reach half of the third smallest claim; and so on.

Piniles’ rule, Pin, (Piniles, 1861) results from a ‘‘double’’ ap-
plication of the constrained equal awards rule using, as for the
Talmud rule, the half-claims instead of the claims themselves: it
selects CEA( c

2 , E) if E ≤


ci

2 , and c
2 + CEA( c

2 , E −


ci

2 ) otherwise.

2 Chun (2005) defines another variant of the Talmud rule.



Download English Version:

https://daneshyari.com/en/article/972552

Download Persian Version:

https://daneshyari.com/article/972552

Daneshyari.com

https://daneshyari.com/en/article/972552
https://daneshyari.com/article/972552
https://daneshyari.com

