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Advection and dispersion in time and space
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Abstract

Previous work showed how moving particles that rest along their trajectory lead to time-

nonlocal advection–dispersion equations. If the waiting times have infinite mean, the model

equation contains a fractional time derivative of order between 0 and 1. In this article, we

develop a new advection–dispersion equation with an additional fractional time derivative of

order between 1 and 2. Solutions to the equation are obtained by subordination. The form of

the time derivative is related to the probability distribution of particle waiting times and the

subordinator is given as the first passage time density of the waiting time process which is

computed explicitly.
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1. Introduction

Continuous time random walks (CTRW) can be used to derive governing
equations for anomalous diffusion [1–4]. The CTRW is a stochastic process model
for the movement of an individual particle [5,6]. In the long-time limit, the process
converges to a simpler form whose probability densities solve the governing
equation, leading to a useful model for anomalous diffusion. For a simple random
walk with zero-mean, finite-variance particle jumps, the limit process is a Brownian
motion AðtÞ governed by the classical diffusion equation qp=qt ¼ q2p=qx2 where
pðx; tÞ is the probability density of the random variable AðtÞ: For symmetric infinite-
variance jumps (i.e., those with probability density function tails that fall off like
jxj�1�a [7] with some index 0oao2), the limit process AðtÞ is an a-stable Lévy
motion, and the governing equation becomes qp=qt ¼ qap=qjxja [8]. When waiting
times between the jumps are introduced, the limiting process is altered via
subordination [9–11]. In this study, we examine the case where the waiting times
are independent of jump size, also called an ‘‘uncoupled’’ CTRW. For infinite mean
waiting times (whose probability distribution is assumed to decay algebraically with
some index 0ogo1) the limit process is AðEðtÞÞ where EðtÞ is the inverse or first
passage time process for the g-stable subordinator. By virtue of its construction,
the process EðtÞ counts the number of particle jumps by time tX0; accounting for the
waiting time between particle jumps. In the scaling limit, EðtÞ keeps track of the
possibly nonlinear link between real time and the operational time that a particle
actually spends in motion. The governing equation becomes qgp=qtg ¼ qap=qjxja

[2,3]. Some applications [12] seem to indicate a time derivative of order 1ogp2: In
this paper, we develop one such equation by extending the CTRW approach to
processes with finite-mean waiting times, and compute the distribution of the
relevant first passage time process.

2. The model

In the usual CTRW formalism, the long-time limit for the waiting time process is a
g-stable subordinator DðtÞ [2]. Then the inverse Lévy process EðtÞ ¼ inffx : DðxÞ4tg

counts the number of particle jumps by time tX0; reflecting the fact that the time Tn

of the nth particle jump and the number Nt ¼ maxfn : Tnptg of jumps by time t are
also inverse processes. When the waiting times between particle jumps have heavy
tails with 0ogo1 (i.e., infinite mean), subordination of the particle location process
AðtÞ via the inverse Lévy process EðtÞ is necessary in the long-time limit to account
for the amount of time that a particle is not participating in the motion process. The
subordination leads to a time derivative of order g in the governing equation of
motion [3]. When waiting times have heavy tails of order 1ogp2; meaning that the
probability of waiting longer than t falls off like t�g; a different model is needed [13].
In this case, convergence of the waiting time process requires centering to the mean
waiting time w, which is not necessary when 0ogo1: Accounting for this leads
to a waiting time process W ðtÞ ¼ DðtÞ þ wt where DðtÞ is a completely positively
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