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Abstract

We consider nonextensive systems that are related to the nonextensive entropy proposed by

Tsallis and can be described by means of the nonlinear porous medium equation and the

nonlinear Fokker–Planck equation proposed by Plastino and Plastino. We show how to

determine the degree of nonextensivity of these systems from experimental data. Both

transient and stationary cases are addressed.
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1. Introduction

Thermostatistics and information theory based on the Boltzmann–Gibbs–Shan-
non measure has found wide applicability in various disciplines ranging from solid
state physics to the physics of open nonequilibrium systems [1–4]. However, as
pointed out time and again in the literature, this approach is subjected to various
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limitations (e.g., Refs. [5,6]). Recently, Tsallis suggested a generalization of
thermostatistics involving the nonextensive entropy measure Sq that depends on a
parameter q, which measures the degree of nonextensivity of systems [7–9]. While for
q ¼ 1 we deal with extensive systems (and Sq recovers the Boltzmann–Gibbs–-
Shannon measure), for qa1 we deal with nonextensive systems. The hope is that
such a nonextensive extention of the Boltzmann–Gibbs–Shannon thermostatistics
and information theory applies to systems for which the extensive theory fails.
Indeed, nonextensive thermostatistics has been successfully applied to describe, for
example, the statistics of systems with long-range interactions [10,11], chaotic
systems involving fractal phase spaces [12,13], systems for which temperature
fluctuations might become relevant [14–16], and systems exhibiting power-law
distributions [17–19]. In this context, a crucial issue is to determine the parameter q.
For particular systems with long-range interactions, a q-value of about 7 has been
found [10,11]. In economics, q-values of about 1.5 have been reported [20,21]. For
chaotic systems, q-values have been related to system parameters [12,13].
Furthermore, for systems subjected to temperature fluctuations q-values have been
related to the spatial scales on which key properties of these systems are typically
studied [14,22,23].
In the present manuscript, the focus is on systems that exhibit power-law

distributions and can be treated within the framework of the nonextensive
thermostatistics suggested by Tsallis. In particular, we assume that we deal
with systems that can be described by means of the nonlinear Fokker–Planck
equation proposed by Plastino and Plastino, whose stationary solutions are
power-law distributions that make the entropy Sq maximal under appropriate
energy constraints [24]. This nonlinear Fokker–Planck equation is of particular
interest because if we interpret the probability density as a particle density function
rðx; tÞ; then the Fokker–Planck equation corresponds to the porous medium
equation

q
qt

r ¼ Q
q2

qx2
rq (1)

used in hydrodynamics [25–27]. Using a data analysis technique developed for
Markov diffusion processes [28–31] and the concept of strongly nonlinear
Fokker–Planck equations [32], we will show in this manuscript how to determine
the parameter q from experimental data.

2. Estimating the degree of nonextensivity

2.1. General considerations

Let us describe a stochastic process by means of a random variable X ðtÞ that is
defined on a phase space O and distributed like uðxÞ at time t ¼ t0: Let Pðx; t; uÞ ¼

dðx � X ðtÞÞ
� �

denote the probability density of X. Here and in what follows, �h i

describes ensemble averages. We assume that the evolution of P is given by a
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