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a  b  s  t  r  a  c  t

The  paper  considers  an  elementary  New-Keynesian  three-equation
model  and  compares  its  Bayesian  estimation  based  on  conventional
priors to the  results  from  the  method  of  moments  (MM),  which
seeks to  match  a finite  set  of  the  model-generated  second  moments
of  inflation,  output  and  the interest  rate  to  their  empirical  counter-
parts.  It  is  found  that  in  the  Great  Inflation  (GI)  period—though  not
quite  in  the  Great  Moderation  (GM)—the  two  estimations  imply  a
significantly  different  covariance  structure.  Regarding  the  parame-
ters,  special  emphasis  is placed  on  the  degree  of backward-looking
behaviour in  the  Phillips  curve.  While,  in line  with  much  of  the
literature,  it  plays  a minor  role  in  the Bayesian  estimations,  MM
yields  values  of  the  price  indexation  parameter  close  to  or even  at
its  maximal  value  of  unity.  For  both  GI  and  GM,  these  results  are
worth  noticing  since  in (strong  or,  respectively,  weak)  contrast  to
the  Bayesian  parameters,  the  covariance  matching  thus  achieved
appears  rather  satisfactory.
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1. Introduction

The New-Keynesian modelling of dynamic stochastic general equilibrium (DSGE) with its nomi-
nal rigidities and incomplete markets is still the ruling paradigm in contemporary macroeconomics.
The fundamental three-equation versions for output, inflation and the interest rate represent the so-
called New Macroeconomic Consensus and, as a point of departure, are most valuable in shaping the
theoretical discussion on monetary policy and other topics. Over the last decade these models have
also been extensively subjected to econometric investigations, where system estimations (as opposed
to single-equations estimations) gained in importance. Indeed maximum likelihood (ML) and more
recently Bayesian estimations crystallized as the most popular methods and by now have become so
dominant that other techniques are at risk of eking out a marginal existence.

An alternative estimation approach is given by minimum distance procedures and here, in partic-
ular, the method of moments (MM).  This technique concentrates on a number of statistics, also called
moments, that summarize salient features of the dynamic systems. MM seeks to identify numerical
parameter values such that, as measured by a suitable loss function, these model-generated moments
come as close as possible to their empirical counterparts. Besides possibly the mean values of some
of the variables, the moments that are most often referred to are either impulse-response functions
or autocovariance functions (of vectors of variables), which convey similar information if the same
shocks are underlying.

It may  now be supposed that MM and likelihood methods do not necessarily stand in marked
contrast but, with the autocovariances as moments, even amount to much the same thing. To quote
Ríos-Rull, Schorfheide, Fuentes-Albero, Kryshko, and Santaeulàlia-Llopis (2011, p. 18): “The likelihood
function . . . peaks near parameter values for which the model-implied autocovariance function of the
observables matches the sample autocovariance function as closely as possible in terms of a statistical
metric. It does so by forcing each shock in the model to contribute particular autocovariance features,
which in total have to mimic  the sample autocovariances.”1 The statement is based on the fact that
the Gaussian likelihood function of a state space model has a linear decomposition in the frequency
domain. The latter involves the spectral density matrices over the Fourier frequencies of the empirical
and model-generated time series, respectively, which, in essence, simply repackage the autocovari-
ances by using sine and cosine functions as weights. Thus, the parameter estimates may  be said to
be “ultimately determined by the implicit weighting of the discrepancy between sample and DSGE
model implied autocovariance functions . . . encoded in the likelihood function” (Ríos-Rull et al., 2011,
p. 20; although the authors make no explicit reference to the connection just mentioned).2

In practice, however, the correspondence between MM and the Gaussian likelihood is not likely to
be a perfect one. First, the theoretical connection between the time-domain and frequency-domain
decomposition of the Gaussian density function is an asymptotic result, while the empirical macro-
economic time series are typically rather short. Second, the data-dependent weighting scheme in the
MM loss function for the autocovariances can be somewhat different from the implicit, likelihood-
implied weighting scheme.3 A third issue is that in the aforementioned correspondence the Gaussian
likelihood includes all of the Fourier frequencies and accordingly relies on all of the autocovariances
up to their maximal lag. By contrast, MM  estimations are only based on a limited number of lags for
their autocovariances.

The choice of the moments and its limitation is actually a point that critics of MM brand as
arbitrary. In this respect the philosophy of MM may  be taken into account. MM  is deliberately a

1 A similar characterization is given by Schorfheide (2008, pp. 398, 402).
2 Two  papers that, after mentioning the connection, employ the frequency-domain decomposition of the Gaussian density

function for their estimations are Christiano and Vigfusson (2003) and Sala (2011). Incidentally, the role of the autocovariances
is  more clearly seen in these papers if one compares their specification of the sample periodogram with the expressions given
in,  e.g., Hamilton (1994, p. 158 for the univariate case, and Section 10.4 for the multivariate case). In case the likelihood is
computed with the aid of the Kalman filter, the latter also provides a general (though rather involved) algorithm for factoring
the  autocovariance-generating function for the observed variables; see Hamilton (1994, pp. 392ff).

3 In particular, this may  be the case when owing to singularity problems MM does not employ an asymptotically optimal
weighting matrix but instead resorts to a diagonal matrix.
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