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h i g h l i g h t s

• A linear combination of power-law functions for adjusting DFA data is proposed.
• Different values of the scaling exponents are estimated by nonlinear least-squares fitting.
• Examples of crude oil market and heart rate variability are discussed.
• Transition from anti-correlated to correlated behavior was observed.
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a b s t r a c t

In many instances, the fluctuation function obtained from detrended fluctuation analysis
(DFA) cannot be described by a uniform power-law function along scales. In fact, the
manifestation of crossover scalesmay reflect the simultaneous action of different stochastic
mechanisms displayed predominantly within certain scale ranges. This note proposes the
use of a linear combination of power-law functions for adjusting DFA data. The idea is
that each power-law function recast the dominance of certain stochastic mechanisms (e.g.,
the mean-reversion and long-term trends) at specific scale domains. Different values of
the scaling exponents are numerically estimated by means of a nonlinear least-squares
fitting of power-law functions. Examples of crude oil market and heart rate variability are
discussed with some detail for illustrating the advantages of taking a linear combination of
power-law functions for describing scaling behavior from DFA.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The detrended fluctuation analysis (DFA) is a widely used approach for detecting serial auto-correlations in sequences.
The method is meant for non-stationary sequences that can be also affected by long-term trends. Briefly, the DFA is carried
out along the following steps [1]. For a sequence, x(k), k = 1, . . . ,N , the corresponding integrated sequence is computed
as y(k) =

k
j=1 (x(j) − ⟨x⟩) , k = 1, . . . ,N , where the mean value of the sequence x(k) is given by ⟨x⟩ =

1
N

N
j=1 x(j). In

the next step, the integrated sequence y(k) is divided into non-overlapping boxes of equal length Nb = [N/M]. In each box
of length Nb, one fits y(k) using a polynomial function pl(k) of order l, which represents the trend in that box. The integrated
signal y(k) is detrended by subtracting the local trend pl(k) in each box of length Nb and the root-mean-square fluctuation
is calculated:

Fx(Nb) =


1
N

N
k=1

(y(k) − pl(k))2
1/2

. (1)
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Fig. 1. (a) Scaling behavior of a random sequence. The estimated scaling exponent is near 0.5, reflecting the absence of long-term correlations. (b) Scaling
behavior of price returns of WTI crude oil market. Two scaling patterns separated by a crossover scale can be observed.

The above computations are repeated for a broad range of scales (i.e., box sizes Nb) to provide a relation between the
fluctuation function Fx(Nb) and the box size Nb. To provide an accurate estimate of the fluctuation function Fx(Nb), the
smallest and largest box sizes are commonly taken of the order of Nb,min = 5 and Nb,max = N/10, respectively.

A reliable power-law relation between Fx(Nb) and Nb is considered as an indication of scaling behavior of the original
sequence x(k):

Fx(Nb) = KNα
b . (2)

The fluctuations with respect to the local trend are characterized by the scaling exponent α, which is a self-affine parameter
representing the long-range correlations properties of the sequence x(k). In this regard, there are no correlations (e.g., white
noise) for α = 0.5. On the other hand, the sequence is anti-correlated for α < 0.5, and correlated for α > 0.5.

In many instances, the fluctuation function Fx(Nb) does not exhibit a uniform power-law behavior Fx(Nb) ∝ Nα
b over the

whole scale domain [Nb,min,Nb,max]. To illustrate this feature, consider a random (i.e., non-correlated) Gaussian sequence of
length N = 103. Fig. 1(a) presents the fluctuation function Fx(Nb) in log–log format for first-order polynomial detrending
(i.e., l = 1) where a linear behavior related to the power-law Fx(Nb) ∝ Nα

b can be observed. The power-law fitting, via linear
least-squares adjustment of log(Fx(Nb)) versus log(Nb), is also displayed, which provide a scaling exponent of 0.48 ± 0.02
over the whole scale range. Given the relatively short length of the random sequence, this is a good estimate of the scaling
exponent for non-correlated patterns. Now, consider the sequence of WTI crude oil prices pk for the period from 1986 to
1990, which corresponds to about 1060 observations. Take the sequence of daily returns r(k) = p(k)−p(k−1) for analyzing
the presence of correlations. Fig. 1(b) exhibits the fluctuation function Fx(Nb) as function of the scale Nb in log–log format.
In contrast to the case of the random sequence, the fluctuation function does not display a uniform power-law behavior. In
fact, an apparent crossover scale is displayed at about Nb,cr = 60 business days.

Besides crude oil prices, non-uniform power-law behavior of the fluctuation function Fx(Nb) appears in a diversity of
instances, including wind-speed data [2], electro-seismic time series [3] vibrations in rotary machinery [4], heart rate
variability [1,5], amongmany others. The proper detection of crossover scales can provide valuable insights in the transitions
between different patterns, which can be used to monitor potential instabilities (e.g., in rotary machinery and heart rate
dynamics) or to characterize mechanisms acting at short- and long-term horizons (e.g., crude oil markets). As further
instances, a crossover scale at about 12–13 days was detected for geomagnetic field and seismicity at Etna volcano, which
was linked to eruptive activity predictability [6]. Also, a crossover at about seven dayswas detected for high-frequencywind
measurements in mountainous regions, which provides valuable insights in the long-term behavior of wind velocity aimed
for eolic energy applications [7]. In general, the detection of crossover scales is in fact generally performed on the basis
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