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h i g h l i g h t s

• Laplace transformed fractional diffusion equation is formulated via Fox’s H-function.
• The derived solution is equivalent with the existing Lévy stable solution.
• The overall spectral entropy increases with the decreasing derivative orders α and β .
• Spectral entropy is considered a measure to characterize the complexity of diffusion.
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a b s t r a c t

Analytical solutions to the fractional diffusion equation are often obtained by using
Laplace and Fourier transforms, which conveniently encode the order of the time and the
space derivatives (α and β) as non-integer powers of the conjugate transform variables
(s, and k) for the spectral and the spatial frequencies, respectively. This study presents
a new solution to the fractional diffusion equation obtained using the Laplace transform
and expressed as a Fox’s H-function. This result clearly illustrates the kinetics of the
underlying stochastic process in terms of the Laplace spectral frequency and entropy. The
spectral entropy is numerically calculated by using the direct integration method and the
adaptive Gauss–Kronrod quadrature algorithm. Here, the properties of spectral entropy
are investigated for the cases of sub-diffusion and super-diffusion. We find that the overall
spectral entropy decreases with the increasing α and β , and that the normal or Gaussian
casewith α = 1 and β = 2, has the lowest spectral entropy (i.e., less information is needed
to describe the state of a Gaussian process). In addition, as the neighborhood over which
the entropy is calculated increases, the spectral entropy decreases, which implies a spatial
averaging or coarse graining of the material properties. Consequently, the spectral entropy
is shown to provide a new way to characterize the temporal correlation of anomalous
diffusion. Future studies should be designed to examine changes of spectral entropy in
physical, chemical and biological systems undergoing phase changes, chemical reactions
and tissue regeneration.
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1. Introduction

The study of diffusion in complex systems has expanded into many different fields [1–5] as investigators seek more
accuratemodels to account for themovement ofmaterials between and acrossmulti-scale interfaces. The initial observation
that diffusion should obey classical Brownianmotion as derived from the classical Fick’s first and second laws has not proven
successful in complex materials, such as biological tissues for describing the movement of water or tracers in either the
intracellular or the extracellular compartments [6–8]. There aremany differentmodels that have been used to describe non-
Gaussian (i.e., anomalous) diffusion [3,6,8,9]. A recent review summarized the most popular anomalous diffusion models
and discussed their properties [10]. In particular, the mean squared displacement (MSD) is shown in Table 1 of Ref. [10] to
provide a common denominator for all models of anomalous diffusion. Despite this similarity, the physical foundations of
these models are very different from each other. In this paper we present another way to establish a connection between
different forms of anomalous diffusion by expressing the solution to the space–time fractional diffusion equation in terms
of the spectral entropy.

In this model a random variable, x(t), describes the movement of molecules in a heterogeneous and tortuous system.
The space–time fractional diffusion equation describes the probability of finding this molecule at position, x, at time, t , in
terms of p(x, t), its probability density function (pdf). This model when extended using fractional order derivative can be
expressed as [11,12],

∂αp(x, t)
∂tα

= Dα,β

∂βp(x, t)
∂|x|β

, (1)

where the initial value p(x, 0) = δ(x), Dα,β is the generalized diffusion coefficient (mβ/sα), the Caputo fractional derivative
in time with the order 0 < α ≤ 1 is expressed as [13],

∂αp(x, t)
∂tα

=
1

Γ (1 − α)

 t

0
(t − τ)−α ∂p(x, τ )

∂τ
dτ . (2)

The Fourier transform of the Reisz fractional derivative in space with the order 0 < β ≤ 2 is expressed as [14],

F


∂βp(x, t)
∂|x|β


= |k|βp(k, t), (3)

where F represents the Fourier transform, p(k, t) is the Fourier transform of p(x, t). It is noted that the MSD of the pdf
diverges when β ≠ 2, and the scaling relation only exists for the rescaled fractional order moments, which is stated as,

⟨|x|q⟩ ∼ tq/β , (4)

where 0 < q < β ≤ 2 for the space fractional diffusion equation [6]. Here, we use the pseudo or imaginary MSD of the pdf,
which is a power law of time as [6,15]:

⟨x2⟩L ∼ t2α/β . (5)

The statistical process is the classical Brownian motion when 2α/β = 1, while if 2α/β < 1, the process is classified as
sub-diffusion, and if 2α/β > 1, the process is described as super-diffusion. The detailed properties of rescaled fractional
order moments of the pdf can be found in Ref. [6]. The solution of Eq. (1) can be obtained via the Fox’s H-function, which
has a heavy tail [16,17],

p(x, t) =
1

β|x|
H2,1

3,3


−|x|

(Dα,β tα)1/β

 (1, 1/β), (α, α/β)(1, 1/2)
(1, 1), (1, 1/β), (1, 1/2)


. (6)

Simpler algebraic solutions of Eq. (6) for special choices of α and β are given in Ref. [18].
It is known that the Fourier transform of p(x, t), i.e., the characteristic function p(k, t) follows the Mittag-Leffler

function [17]. Recently, this technique has been expressed in terms of the spectral entropy Hk(p) as a measure of spatial
correlation in complex system, for example biological tissue [19]. Fig. 1 gives a schematic diagram of the strategy tomeasure
the uncertainty in a diffusion process, inwhich FT and IFT respectively represent the Fourier transform and its inverse, LT and
ILT respectivelymean the Laplace transformand its inverse, FLT is the Fourier–Laplace transform, p∗ is the complex conjugate
of p, and H is the spectral entropy, which is calculated by the Shannon entropy (SE). In order to measure the temporal
correlation of the diffusion process, we need to acquire the formula of p(x, s) first. Previously, Mainardi gave an expression
of p(x, s) for the special caseβ = 2 [17], and Barkai introduced a general Lévy stable solution for 0 < α ≤ 1, 0 < β ≤ 2 [20],
in which the standard symmetric Lévy stable distribution is addressed [21]. In the present work, a more succinct solution
for the Laplace transformed fractional diffusion equation is formulated with the Fox’s H-function.

Furthermore, it has been recognized that entropy conveys more information about the dynamics of heterogeneous
and multi-scale systems [22,23]. Higher entropy indicates more complexity of the underlying movement of molecules in
the heterogeneous environment [16]. To detect the temporal correlation of anomalous diffusion in complex systems, the
individual contributions of the frequency to the total spectral entropy Hs(p) are illustrated, and the properties of spectral
entropy in terms of the formula p(x, s) are investigated both for the sub-diffusion and super-diffusion.
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