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h i g h l i g h t s

• A many-body generalization of the Quantum Brownian motion model perturbed by a time-dependent homogeneous electric field is
proposed.

• The analytical wave function of this model is obtained.
• The Harmonic Potential Theory is generalized to the quantum dissipative systems.
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a b s t r a c t

We investigate the many-body wave function of a dissipative system of interacting parti-
cles confined by a harmonic potential and perturbed by a time-dependent spatially ho-
mogeneous electric field. Applying the method of Yu and Sun (1994), it is found that
the wave function is comprised of a phase factor times the solution to the unperturbed
time-dependent (TD) Schrödinger equation with the latter being translated by a
time-dependent value that satisfies the classical damped driven equation of motion, plus
an addition fluctuation term due to the Brownian motion. The wave function reduces to
that of the Harmonic Potential Theorem (HPT) wave function in the absence of the dissipa-
tion. An example of application of the results derived is also given.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the past decades much attention has been paid to the physics of dissipative quantum systems [1–8]. Usually there are
twomain approaches for the dissipative quantum systems, the first one is so called system plus bath approach. Namely, put
the system S into an environment, a bath B of N harmonic oscillators interacting with the system through certain coupling.
The quantization is applied to the whole system S + B which is conservative, then the dissipation in the system S being
obtained by eliminating the variables of the bath R from its corresponding Heisenberg equation. An extensively studied
model of the dissipative quantum system is the quantum Brownian motion (QBM) [9–19]. Applying the system plus bath
approach to the QBM will provide both the friction and the fluctuation force.

The second approach is the use of an effective Hamiltonian, which yields the dissipation equation through its Heisenberg
equation automatically. The classical model of quantum damped harmonic oscillator (QDHO) [20,21] is a typical example
that results from the application of the effective Hamiltonian approach to the QBMwhile ignoring the effect of the Brownian
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motion. The effective Hamiltonian corresponding to QDHO is the so called Caldirola [22] and Kanai [23] (CK) Hamiltonian
(see Eq. (14)) but originally derived by Bateman [24]. This approach is very convenient to treat some dynamical problems
of dissipative process for both classical and quantum cases. However, the CK Hamiltonian alone is not sufficient to the
describe the quantum dissipative problem [20] since it only takes damping into account while no fluctuating force involved.
Moreover, there appears to be various problems like the violation of the Heisenberg uncertainty principle associated with
this Hamiltonian, we refer the reader to Refs. [20,21,25] for more details. This discrepancy can be avoided by interpreting
the CK Hamiltonian as one that describes a harmonic oscillator having a time-dependent mass with exponential accretion
m(t) = meηt instead of being subjected to a friction force [26–29]. On the other hand, by adding a stochastic force in
the equation of motion which will take care of the fluctuation due to the environment [26,30–34] will also overcome the
problem. Other approaches to solve this issue include considering a consistent transition between the CK formalism and
a logarithmic nonlinear Schrödinger equation [25]. The connection between the CK Hamiltonian and the system plus bath
approach has been shown by Yu and Sun (YS) [35,36], whereby they obtained an exact solution for the wave function of the
system plus the bath.

In the literature, themodel of QBM treated usually is a one-body problem and has been attacked by various authors using
many different methods, such as the evolution of the density matrix is studied by using the master equation [37,38] within
Lindblad theory [39,40] which is under the Markovian approximation. The exact master equation for QBM was derived by
the authors of Refs. [16,18]. More recently, an exact method called quantum state diffusion [41] method was employed
[42–47] to this problem. Moreover, the exact dynamics of a QBM in the presence of a time-dependent (TD) external force
was studied by the authors of Ref. [48]. The studies of two-body QBM are rare and probably were first addressed by the
authors of Ref. [49]. To our knowledge, a many-body generalization of QBM was first proposed by the authors of Ref. [19],
but they only studied the case of two mutually coupled harmonic oscillators.

In this work, we investigate the many-body generalization of QBM perturbed by a TD spatially homogeneous electric
field. We show that the wave function is comprised of a phase factor times the solution to the unperturbed time-dependent
Schrödinger equation with the latter being translated by a TD value that satisfies the classical damped driven equation of
motion, plus an addition fluctuation term due to the Brownian motion. In the absence of dissipation, the wave function
derived reduces to that of the harmonic potential theorem (HPT) wave function [50] which has a similar structure. Thus we
extend the HPT to the case in the presence of dissipation.

The rest of the paper is organized as follows. In Section 2, we show that the Hamiltonian can be decomposed into the
center-of-mass (CM) and relative motion part, the external electric field will only affect the former. Then the effective
Hamiltonian for the CM motion part is derived. Its wave function then is obtained in Section 3. In Section 4 an example
of the application is given, then the concluding remarks are made in Section 5.

2. The effective Hamiltonian for the center-of-mass motion

For simplicity,we startwith the one-dimensional case. Consider a systemofNs harmonic oscillatorswith arbitrarymutual
interaction u(qi − qj) and ω0 the frequency. The Hamiltonian of the system is

ĤS =
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Without lose of generality, we can assume the system is moved into an environment of a bath at t = 0. The bath B is
comprised of NB harmonic oscillators Bi with massmi, coordinates xi and frequency ωi. Then the Hamiltonian of the bath is
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The Hamiltonian of the composite system of S and B has the following form

Ĥ0 = ĤS + ĤI + ĤB, (3)

where

ĤI =


NB
j

cjxj


·

Ns
i

qi, (4)

is the interaction between the system and bath. It should be pointed out that this Hamiltonian Ĥ0 can also be derived from
the Independent-oscillator model [5] as shown by YS in treating the exact dynamics of a quantum dissipative system in a
constant external field [51]. A spatially homogeneous TD driving electric field E(t) = f (t)/q with q = −e the charge of
an electron is turned on at time t = t0 > 0. We assume f (t) = 0 for t ≤ t0. Mathematically f (t) can be described by
some smooth function times a step function, i.e. f (t) = Θ(t − t0)fe(t). Hence, without loss of generality we can always set
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