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h i g h l i g h t s

• For the first time a transition from one superstatistics to another is described, as a function of the time scale considered.
• Relevant example system is financial time series of share price returns on various time scales, good quantitative agreement with data.
• Newmodel interpolating between lognormal and chi-square superstatistics is introduced.
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a b s t r a c t

Share price returns on different time scales can be well modelled by a superstatistical
dynamics. Here we provide an investigation which type of superstatistics is most suitable
to properly describe share price dynamics on various time scales. It is shown thatwhileχ2-
superstatistics works well on a time scale of days, on a much smaller time scale of minutes
the price changes are better described by lognormal superstatistics. The system dynamics
thus exhibits a transition from lognormal to χ2 superstatistics as a function of time scale.
We discuss a more general model interpolating between both statistics which fits the
observed data very well. We also present results on correlation functions of the extracted
superstatistical volatility parameter, which exhibits exponential decay for returns on large
time scales, whereas for returns on small time scales there are long-range correlations and
power-law decay.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Manywell established concepts inmathematical finance (such as the Black–Scholes model) are based on the assumption
that an index or a stock price follows a geometric Brownian motion, and as consequence the log returns of these processes
are Gaussian distributed. But nowadays it is well known that the log returns of realistic stock prices are typically non-
Gaussian with fat tails [1–22]. Such behaviour can be well captured by superstatistical models [2–15]. The basic idea of
this method borrowed from nonequilibrium statistical mechanics is to regard the time series as a superposition of local
Gaussian processesweightedwith a process of a slowly changing variance parameter, often called β . This approach has been
applied to many areas of complex systems research, including turbulence, high energy scattering processes, heterogeneous
nonequilibrium systems, and econophysics (see e.g. Ref. [11] for a short review). In finance early applications of the
superstatistics concept were worked out by Duarte Queiros et al. [6,7] and Ausloos et al. [5]. Van der Straeten and Beck [3]
analysed daily closing prices of the Dow Jones Industrial Average index (DJI) and the SP 500 index. They verified that both
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Table 1
Decay rates of correlation functions of volatility for shares of different sectors.

Company Sector γ T (Days) α T (min)

Alcoa Inc. (AA) Basic materials 0.115 18 0.094 11
The Coca-Cola Company (KO) Consumer goods 0.061 15 0.101 13
Bank of America Corporation (BAC) Financial 0.057 20 0.073 13
Johnson & Johnson (JNJ) Healthcare 0.041 16 0.102 13
General Electric Company (GE) Industrial goods 0.068 18 0.062 14
Wal-Mart Stores Inc. (WMT) Services 0.036 16 0.092 13
Intel Corporation (INTC) Technology 0.048 17 0.096 13

log-normal superstatistics and χ2 superstatistics result in good approximations. Biro and Rosenfeld [4] also studied the data
sets of the Dow Jones index and verified that the distribution of log returns is well fitted by a Tsallis distribution. Katz and
Li Tian [1] showed that the probability distributions of daily leverage returns of 520 North American industrial companies
during the 2006–2012 financial crisis complywith the q-Gaussian distributionwhich can be generated byχ2 superstatistics.
They also verified in Ref. [2] that the Tsallis entropic parameter q obtained by direct fitting to q-Gaussians coincides with
the q obtained from the shape parameters of the χ2 distribution fitted to the histogram of the volatility of the returns. Gerig,
Vicente and Fuentes [8] consider a similar model that indicates that the volatility of intraday returns is well described by
the χ2 distribution, see also Ref. [9] for related work in this direction.

In this paper, we will carefully analyse for various data sets of historical share prices which type of superstatistics is
best suited to model the dynamics. While Tsallis statistics (=q-statistics) is known to be equivalent to χ2 superstatistics
[13,22], there are other types of superstatistics, such as lognormal superstatistics and inverse χ2 superstatistics [10], which
are known to be different from q-statistics (though all these different statistics generate similar distributions if the variance
of the fluctuations in β is small [13]). We show that in our analysis χ2-superstatistics appears best suitable to describe the
daily price changes,whereas onmuch smaller time scales ofminutes lognormal superstatistics seems preferable.We analyse
the relevant time scale of the changes in the superstatistical parameter β and present results for the decay of correlations
in β . For small return time scales, correlation functions exhibit power law decay and there are long memory effects. In the
final section, we develop a synthetic stochastic model that fits the data well. This is kind of a hybrid model interpolating
between lognormal and χ2-superstatistics.

This paper is organized as follows. In Section 2 we look at share price returns on large (daily) time scales. In Section 3 we
do a similar analysis on small (minute) time scales. In Section 4 we investigate correlations of the superstatistical volatility
parameter on both time scales. In Section 5 the hybrid model is introduced. Our final concluding remarks are given in
Section 6.

2. Superstatistics of log-returns of share prices on a large time scale

Non-equilibrium system dynamics can often be regarded as a superposition of a local equilibrium dynamics and a slowly
fluctuating process of some variance variable β [13]. These types of ‘superstatistical’ nonequilibriummodels are also useful
for financial time series [6,7]. In this article, the empirical data we use as an example is the historical stock prices of Alcoa
Inc(AA), which is an American company that engages in the production and management of primary aluminium, fabricated
aluminium and alumina. We have looked at shares of many other companies as well (see Table 1), with similar results. Our
data set covers the period January 1998–May 2013. We study the log return Ri denoted by

Ri = log

Si+1

Si


(1)

where i = 0, 1, 2, . . . ,N; Si and Si+1 are two successive daily closing prices. We consider the normalized log returns

ui =
Ri − ⟨R⟩
R2

− ⟨R⟩2

(2)

which have been rescaled to have variance 1. The symbol ⟨· · ·⟩ denotes the long-time average.
From the simplest superstatistics model point of view, the entire time series of stock prices can be divided into n smaller

time slices T . We call T optimal window size. Within each T , the financial volatility β is temporarily constant and the log
return of the stock price is Gaussian distributed. β has some probability distribution f (β) to take a particular value in a
given slice. The conditional probability p(u|β) is

p(u|β) =


β

2π
exp


−

1
2
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(3)

and the marginal probability distribution of u for long time observation is the average over local Gaussians weighted with
the probability density f (β)

p(u) =


p(u|β)f (β)dβ. (4)
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