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h i g h l i g h t s

• Evolving networks generated by the Sierpinski Pentagon are constructed and analyzed.
• The evolving networks are scale-free.
• The evolving networks have the small-world effect.
• The evolving networks are not fractal scaling.
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a b s t r a c t

The Sierpinski Pentagon is used to construct evolving networks, whose nodes are all solid
regular pentagons in the construction of the Sierpinski Pentagon up to the stage t and
any two nodes are neighbors if and only if the intersection of corresponding pentagons is
non-empty and non-singleton. We show that such networks have the small-world and
scale-free effects, but are not fractal scaling.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the past two decades, lots of attention has been paid to the research of complex networks, which are ubiquitous
in nature and society such as WWW [1], metabolic networks [2,3], a network of routers connected by various physical
connections [4]. Despite their diversity, most networks appearing in real world obey some organizing principles, which
lead to systematic and measurable deviations basing on the random graph theory originating from Erdös and Rényi [5,6].
In particular, two properties of real networks have aroused considerable scientific and technological interests. First, lots
of measurements show that most networks display the scale-free property [7], which means that the probability that a
randomly selected node with exactly k links decays as a power law, following P(k) ∼ k−α , where α is the degree exponent.
Second, lots of networks have the small-world behavior [8], namely, the geodesic distance between two uniform randomly
chosen nodes grows proportionally to the logarithm of the number of nodes, simultaneously they display high average
clustering coefficient.
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Fig. 1. The first two iterations for the Sierpinski Pentagon.

At the mean time, various self-similar fractals are used to model and mimic evolving complex networks due to the
occurrence of self-similarity in real-world complex networks demonstrated by Song et al. [9]. Zhang et al. [10–12] use
the Sierpinski gasket to construct evolving networks which follow the power-law degree distribution and possess small-
world effect. Several complex networks are modeled on self-similar fractals, for example, Apollonian networks [13],
Koch networks [14–18], Platonic solid networks [19], Vicsek networks [20], Sierpinski networks [21,22], the hierarchical
networks [23] and generalized self-similar networks [24].

The fractality of complex networks is introduced in Song et al. [9,25], see also Gallos et al. [26]. In a series of articles
[27–32], the research group of Makse et al. analyzes the fractality of complex networks and uses their techniques of fractal
analysis on networks to study the biological networks. An ℓB-box is a subset of node set V such that the distance dij between
any pair of nodes i and j in the box has to be dij < ℓB. Let NB = NB(ℓB) denote the minimal number of ℓB-box to cover V ,
which is the same as ones in Refs. [9,33]. In Ref. [9], a network with node set V has fractal scaling with fractal dimension dB
if

NB ∼ (ℓB)
−dB . (1.1)

In this article, we give a self-similar, scale-free and small-world complex network generated from a self-similar fractal, but
our networks are non-fractal scaling, which may be a common feature for some self-similar networks as indicated by Kim
et al. [33].

In Section 2, we give out the construction of the complex network generated by Sierpinski Pentagon. Then, in Sections 3
and 4, we show that described network is scale-free and small-world. At last in Section 5, using the technique of fractal
geometry, we prove that this network is not fractal scaling.

2. Construction of the network

2.1. Sierpinski Pentagon and its IFS

The Sierpinski Pentagon is generated by the following iteration function system (IFS).
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Then, the Sierpinski Pentagon F is a self-similar fractal satisfying

F =

5
i=1

fi(F).

Fix the solid pentagon K which is the left one in Fig. 1, then fi(K) ⊂ K . Let f6 = f1. Notice that fi(K)∩ fi+1(K) is a singleton.
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