
Physica A 446 (2016) 171–181

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Controlling the non-classical properties of a hybrid Cooper
pair box system and an intensity dependent nanomechanical
resonator
C. Valverde a,b,c,∗, V.G. Gonçalves b, B. Baseia d,e

a Câmpus Henrique Santillo, Universidade Estadual de Goiás - 75.132-903, Anápolis, Goiás, Brazil
b Universidade Paulista (UNIP) - 74.845-090, Goiânia, Goiás, Brazil
c Escola Superior Associada de Goiânia (ESUP) - 74.840-090, Goiânia, Goiás, Brazil
d Instituto de Física, Universidade Federal de Goiás - 74.001-970, Goiânia, Goiás, Brazil
e Departamento de Física, Universidade Federal da Paraíba - 58.051-970, João Pessoa, Paraíba, Brazil

h i g h l i g h t s

• The work treats a hybrid system (CPB–NR) via the Buck–Sukumar model.
• Quantum entropy and excitation–inversion are focused.
• System evolution in presence of losses is considered.
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a b s t r a c t

The present work refers to a somewhat realistic treatment to investigate the entropy and
the excitation–inversion of a coupled system that consists of a nanomechanical resonator
and a superconducting Cooper pair box. The procedure uses the Buck–Sukumar model in
themicrowave domain and considers the nanoresonator with a time-dependent frequency
as well as both subsystems in the presence of losses. The results were obtained for the
temporal evolutions of the entropy of each subsystem and the excitation–inversion of the
Cooper pair box. A comparison about which of these two subsystems is more sensitive
to the presence of losses was done. The results suggest that appropriate choices of the
time-dependent parameters can help us tomonitor these properties of the subsystems and
may offer potential applications, e.g., in the generation of non-classical states, quantum
communication, and quantum lithography.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the recent years investigations on nanomechanical systems [1] have rapidly been developed. The rush in this direction
was stimulated by various perspectives and applications, which before were unsuspected. The enormous progress in the
research of nanomechanical systemshas alsomade the dreamof controlling the interface between the quantumand classical
worlds in a realistic way. This was shown by the emergence of hybrid quantum systems [2], which are intended to achieve
a coherent transfer of quantum information from a single quantum emitter (e.g., superconducting qubits, cooper pair box,
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microwave resonators, quantum dots, etc.) and a solid state mechanical resonator, which moves to quantum physics giving
birth to a new paradigm. In addition, these systems have received considerable attention due to their diverse potential
applications, includingmetrology (mass force or spin ultra-sensitive detectors), based on the remarkable sensing properties
of nanomechanical resonators and their very low mass and lightness.

An important focus of quantum optics is concerned with the atom–field system. Inspired by the various tests applied
to this coupled system and on the several results obtained, including their limitations, the researchers have passed from
the light domain to the microwave domain of the superconducting version, the quantum electro-dynamics circuit. This
system furnishes a new test for microwave domain that interacts with superconducting qubits[3,4]. For a broader context,
we can mention investigations using this system, e.g., Landau–Zener transition [5]; atomic physics and quantum optics [6];
mechanisms for photon generation from quantum vacuum [7]; quantum simulation, challenges, and promises of fast-
growing field [8].

Here we assume that in the laboratory the atom is substituted by the Cooper pair box (CPB) and the photon is substituted
by the nanomechanical resonator (NR) [9]. So, the atom–field interacting system goes to the CPB–NR interacting system
with concomitant passage from the optical domain to the microwave domain. Cooper pair boxes coupled to nanoresonators
have been analyzed in the following works: quantum network [10]; squeezed states and entangled states [11]; cooling
mechanical oscillators [12]; Bell inequality violations [13].

There are fewworks in supporting literature that deal with the interaction between a CPB and an NR when the latter has
either a time-dependent frequency [14,15] or a time-dependent amplitude of oscillation. Thewell-known Jaynes–Cummings
model (JCM), which describes the interaction of a single two-level atom and a single mode of a quantized radiation field, is
the simplest model for this system and provides exact solutions. It is analogous to the CPB–NR system, but since the year
1963, many others studies have implemented the JCM to describe the atom–field interaction [16]. Some generalizedmodels
were also constructed and extensively studied [17–19]. These studies include the system acted upon by the Stark effect
[20,21] to investigate quantum non-demolition measurements [22–24]. Usually the investigations assume the field initially
in a (pure) coherent state. However, as the atom–field interaction is turnedon the field state changeswith the time evolution;
while the field state loses its coherence it becomes non-classical [25]. Some references to this subject are, e.g., about non-
classical properties of a state [26], generation of superposition states [27], the degree of non-classicality of a state [28] and:
sculpturing coherent states to get Fock states [29] — plus references therein.

The traditional JCM was extended to the case of intensity-dependent coupling, proposed by B. Buck and C.V. Sukumar [30]
in order to study the influence of the field intensity, via its excitation number, upon the atom–field system, where a single
atom interacts with a single mode of an optical field. This model was generalized by V. Buzek [31] to include a new coupling,
with time-dependent intensity. In the present work we will employ the model by Buck–Sukumar (BS) to study the CPB–NR
system, namely:wewill suppose the coupling being dependent of the intensity of theNR oscillations and also that it changes
with time, as assumed in Ref. [31]. In addition, we include the presence of dissipation effects to put the system in a realistic
scenario and verify in which way they affect the excited level of the CPB, the excitations of the NR, and the dynamical
properties of the entire CPB–NR system; then some points raised are: how dissipation spoils the system operation and in
which way the detuning could prevent it, allowing us the control of entanglement features, collapse–revival effects, and
others. The results obtained indicate the possibility of some potential applications [32–37].

2. The Hamiltonian system

A superconductor CPB charge qubit is adjusted to the input voltage V1 of the system, through a capacitor with an input
capacitance C1. Following the configuration shown in Fig. 1 we observe three loops: a small loop in the left, another in the
right, and a great loop in the center. The control of the external parameters of the system can be implemented via the input
voltage V1 and the three external fluxes ΦL, Φr and Φt . The control of these parameters allows us to make the coupling
between the CPB and the NR. We consider } = 1 and assume as identical the four Josephson junctions of the circuit system,
having the same Josephson energy E0

J ; the external fluxes ΦL and Φr are also assumed as identical in magnitude, although
they have opposite signs ΦL = −Φr = Φx (see Ref. [14]). So, taking into account the decay in the excited level of the CPB
and dissipation in the NR, we can write the total Hamiltonian of the system as follows,

Ĥ = ω(t)âĎâ+
1
2
ωc(t)σ̂z + λ(t)


â
√

âĎâσ̂+ +
√

âĎââĎσ̂−

− iγ (t)|e⟩⟨e| − iδ(t)âĎâ. (1)

In Eq. (1) the first term describes the NR, the second describes the CPB, the third represents the intensity dependent
interaction introduced by the BS model, here including the time-dependent parameter λ(t) introduced by Buzek, the fourth
term γ (t) stands for the time-dependent loss affecting the CPB and the fifth term δ(t) stands for the time-dependent loss
that affects the NR. In this equation âĎ (â) is the creation (annihilation) operator for excitations in the NR, σ̂+ (σ̂−) is the
raising (lowering) operator for the CPB, and σ̂z is the z-component of the Pauli spin operator. Eq. (1) stands for a non-
Hermitian Hamiltonian (NHH). Usually, quantum mechanics works with Hermitian Hamiltonians; however, one can find
many papers in supporting literature using NHH: one of them appears in Ref. [38], used by the authors to map a wave guide
system, metal-silicon, where an optical potential is modulated along the length of the wave guide to get a non-reciprocal
light propagation; another application appears in Ref. [39], employed by the authors to show occurrence of entanglement
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