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a b s t r a c t

Effects of the averaging over disorder realizations (samples) on the phase behavior are an-
alyzed in terms of the mean field approximation for the random field Ising model with
infinite range interactions. It is found that the averaging is equivalent to a drastic modifi-
cation in the statistics of the quenched variables. In its turn, this lowers the critical temper-
ature of a second-order phase transition or, depending on the sampling, even suppresses
the ordered phase. Possible first order transitions are shown to be softened by the sam-
ple averaging. Common issues and differences in the interpretation of these effects in the
context of the simulation and experimental studies are discussed.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

An influence of a quenched disorder on the phase behavior is a long-standing problem that has received much interest
[1,2]. Various theoretical aspects, such as disorder relevance, Griffiths phenomena, possible lack of self-averaging [3] or
disorder-induced rounding are being discussed [4] (see Ref. [5] for a recent review). In the case of the so-called weak (or
random Tc) disorder it is believed [5] that the details of the probability distribution should not be important because the
physics is dominated by the long-range properties.

On the other hand, there are systems in which the shape of the probability distribution is important. For instance, the
fluid adsorption [6] or the colloid-polymer mixtures separation in random porous media are found [7] to belong to the uni-
versality class of the random-field Isingmodel (RFIM) [1,8]. The latter is just a prototype of a system, where the randomness
plays an essential role, the so-called strong disorder [9]. In contrast to the weak disorder case [4,5], a change in the distribu-
tionmodifies the degree of frustration, inducing specific fluctuations [10], which are not present in the pure (bulk) case. The
RFIMhas been analyzed in themean field approximation (MFA) [11–13] andmore recently by computer simulations [10,14].
The distribution width [11], asymmetry [12] or bimodality [13,15,16] have been shown to induce crucial changes in the
phase diagram. Nevertheless, in the context of adsorption studies it becomes questionable [6,17] that the true equilibrium
picture is observed in experiments, revealing a hysteretic behavior instead of sharp steps typical for a two phase coexistence.
Moreover, it has been demonstrated [6,18] that the hysteresis can exist even without an underlying phase transition. This,
however, does not discard completely a possibility of the phase behavior in disordered systems, but rather makes one to
search for the conditions at which it can be observed.

Another aspect of the randomness is that two quenched systems prepared in the same way are not microscopically
identical because only few macroscopic disorder parameters are usually controlled. Therefore, one has to average over dif-
ferent realizations. In the present study we argue that in this class of systems the averaging over disorder realizations in the
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simulations or appearing in the context of self-averaging hypothesis [1,2] in the analysis of experiments, is equivalent to
crucial changes in the distribution of quenched variables (random fields in the RFIM language). In this way a sample aver-
aged distribution brings up new statistical features which are absent from the statistics of each sample. Consequently, the
phase behavior seen on average can be remarkably different from that in a separate sample. In particular, we are going to
analyze whether a small difference of realizations can lead to qualitative changes in the phase behavior.

2. Averaging in disordered systems

Let us consider a quenched-annealed system. The annealed subsystem consists of interacting species (e.g. particles or
spins) characterized by a set of variables {si}. The latter are governed by some Hamiltonian H[{si}|{hk}] that contains a set
of quenched variables (local porosities or magnetic fields) {hk}, distributed according to some probability density f ({hk}).
For simplicity we assume the disorder to be non-correlated f ({hk}) =


k f (hk), such that the position label is dropped

f (hk) = f (h). In contrast to coupled annealed systems (e.g. an adsorbate–substrate coupling [19]), in quenched-annealed
systems the averaging should be taken in two steps. Tracing off the annealed variables one gets a quenched thermodynamic
function m(h) (an order parameter) that is conditional to the state, h, of the quenched counterpart. Then, as usually [1,2],
one takes an average ofm(h) with the distribution f (h).

However, in reality, the situation is not so straightforward. In experimental or simulation studies only few disorder
parameters (e.g. mean porosity, average field or site activity) are usually controlled during the quenching. Therefore, one has
to deal with sample-to-sample fluctuations in different realizations r . Thus, for a given sample the distribution implicitly
depends on the realization f (h) = f (h|r). Consequently, the disorder averages are also realization dependent:

m(r) = m(h) =


dhf (h|r)m(h). (1)

In order to find a ‘‘representative’’ result in the simulations one could generate an ensemble of samples corresponding to
different realizations which appear with a probability density ϕ(r). Such a procedure has recently been reported [20]. Then
an average over realizations is taken:

m =


drϕ(r)m(r) =


drϕ(r)


dhf (h|r)m(h). (2)

If the sampling ϕ(r) does not depend on the h-disorder, we may change the order of integration, defining the realization-
averaged (or sample-averaged) distribution

Ψ (h) =


drϕ(r)f (h|r). (3)

Then the order parameter should be calculated from

m =


dhΨ (h)m(h). (4)

On the other hand, an experimentalist is usually working with a single system (or with few systems). This rises a question
on a representability of a single experiment for a given class of materials. This leads to the concept of self-averaging [1–3,5].
Namely, it is assumed that an experimental system is large enough, such that it may be viewed as a composition of a large
number of macroscopic subsystems (samples). Each of them corresponds to a different realization of the quenched disorder.
In thisway ameasurement corresponds to an average over the subsystems, thuswe arrive at the same representation (3), (4).
This mathematical similarity enables one to compare the simulation and the experimental results. Note that the averaging
over realizations (3) is formally equivalent to creating some ‘‘representative’’ or ‘‘typical’’ [1] sample with a distribution
Ψ (h) that is thought to incorporate the generic features, independent of the system preparation procedure. However, in the
context of experimental studies, invoking the self-averaging concept, this system is (or is believed to be) a real object, while
in the simulation, where each realization can be tested independently, it is artificial.

Therefore, despite its logical transparency, the averaging (3) is not a trivial procedure. It leaves some important questions,
such as how the final result (4) depends on the sampling ϕ(r) and on the quenching in each sample f (h|r)? Indeed, from
Eq. (3) we may expect that, depending on these ingredients, the resulting distribution Ψ (h) could be remarkably different
from that in a separate sample. From a quite general point of view this issue has been analyzed within the superstatistical
approach [21]. It has been demonstrated how an exponential distribution (e.g. of Boltzmann type) transforms into a power-
law as a result of a fluctuating environment [21,22] or a constraint [23] restricting the phase space. In its turn, such a
modification in the statistics of the quenched variables (namely, an enhancement of ‘‘rare’’ events [4,5,9]) might lead to
non-trivial consequences for the thermodynamics, especially near a phase transition point. In what follows we analyze this
issue in more detail.

3. Phase behavior

Realizations of the quenched subsystem are usually obtained by repeating some preparation procedure (e.g. sol–gel
technique in experiments, or diffusion-limited aggregation in the simulation studies). Therefore, it is reasonable to accept
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