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h i g h l i g h t s

• A time-changed Brownian model is considered.
• A method to compute the first-passage probability density function is proposed.
• Several applications in finance are presented.
• The proposed method is extremely accurate and fast.
• The proposed approach performs much better than the finite difference method.
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a b s t r a c t

We propose a numerical method to compute the first-passage probability density function
in a time-changed Brownian model. In particular, we derive an integral representation
of such a density function in which the integrand functions must be obtained solving a
system of Volterra equations of the first kind. In addition, we develop an ad-hoc numerical
procedure to regularize and solve this system of integral equations.

The proposed method is tested on three application problems of interest in mathemat-
ical finance, namely the calculation of the survival probability of an indebted firm, the pric-
ing of a single-knock-out put option and the pricing of a double-knock-out put option. The
results obtained reveal that the novel approach is extremely accurate and fast, and per-
forms significantly better than the finite difference method.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Time-changed Brownian motions have several applications in finance, biology and physics, see e.g. Refs. [1–9] and
references therein, as they allow one to model various kinds of anomalous diffusions that are frequently encountered in
these fields.

One of the time changes that is often considered is

t → tα, 0 < α < 1 (1)
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see, for example, Ref. [10]. It is worth observing that the time change (1), despite its simplicity, leads to a volatility structure
which is of particular importance in finance and which is considered, for example, in Ref. [5] (see Remark 3.3 therein).

In the present paper, we consider a geometric Brownianmotion in which the diffusion term is time changed as in (1) and
we propose an efficient approach to compute the first-passage probability density function of such a process through either
one or two barrier levels. This function satisfies an initial–boundary value partial differential problem in two independent
variableswhichmust be solved by numerical approximation. To this aim,we develop a suitable integral approach that allows
us to reduce the partial differential problem to either a single or a system of two Volterra integral equations of the first kind
(depending on whether one or two barriers are considered). Then, the integral equations obtained, which involve only one
independent variable, are regularized and solved by means of a suitable numerical method based on product integration.
The main advantage of such an approach is that the first-passage probability density function can be easily computed using
a direct and fast forward recursion.

A geometric Brownian motion with time-change (1) is well-suited for derivative pricing since it ensures the absence of
arbitrage opportunities (see, e.g., Refs. [12] and [13]), contrary to what happens for other anomalous diffusion processes
such as the fractional Brownian motion (see, e.g., Ref. [11]). Therefore, the method proposed in the present paper is tested
on three problems of interest in mathematical finance. Namely, we consider the calculation of the survival probability of an
indebted firm, the pricing of single-knock-out put options and the pricing of double-knock-out put options.

Numerical simulations are performed which reveal that the novel algorithm is extremely efficient from the computa-
tional standpoint. In fact, in just a few hundredths of a second, it is always possible to obtain relative errors whose order of
magnitude is not greater than 10−6 and in some cases is also much smaller than that.

To better highlight the performances of the proposed integral method we also present a comparison with another
numerical approach. Now, in the literature a variety of numerical algorithms for pricing barrier options or, more in
general, for solving partial differential equations of parabolic type, are available (the interested reader can see, for example,
Refs. [14–21] and references therein). In the present paper, the proposed integral method is tested against a finite difference
schemewhich is commonly employed for barrier option pricing (see, e.g., Refs. [22–27]). In particular, as shownbynumerical
experiments reported in Section 6, the integral method performs significantly better than the finite difference approach.

The remainder of the paper is organized as follows. Section 2 introduces the time-changed Brownian model and the
partial differential problem that yields the first-passage probability density function. Section 3 describes the integral
formulation of the partial differential problem shown in Section 2. Section 4 performs the numerical approximation of the
Volterra integral equations. Section 5 outlines three problems of interest in finance. Section 6 presents and discusses the
results of the numerical simulations. Section 7 concludes.

2. Model

Let a stochastic process S follow the time-changed geometric Brownian motion:

dS (t) = µS (t) dt + σ S (t) dBα (t) , S (0) = S0 (2)

where µ is a constant drift parameter, σ is a constant volatility parameter and Bα is a time-changed Brownian motion with
time change as in (1). It is worth noting that if α = 1, Bα is a standard Wiener process and thus (2) reduces to the well-
known geometric Brownian motion on which the famous Black and Scholes model stands, see Ref. [28]. Moreover, the case
0 < α < 1 represents subdiffusion, while the case 1 < α < 2 represents superdiffusion, see Ref. [10].

We are concerned about the first-passage of S through two barrier levels SL and SU , with SL < S (0) < SU . Note that we
can also consider the case of a single upper barrier by assuming SL → −∞ or the case of a single lower barrier by assuming
SU → +∞.

Let us apply the change of variable

X (t) = ln (S (t)) (3)

and let us define

x0 = ln (S0) . (4)

Then, let us consider the first-passage time:

τ = inf {t ≥ 0 | X (t) ≤ xL or X (t) ≥ xU } (5)

where xL = ln (SL) and xU = ln (SU). That is, τ is the first time at which the process S breaches either the barrier SL or the
barrier SU .

Moreover, let f (t, x) denote the first-passage probability density function of X , which is defined as follows:

f (t, x) dx = Prob [x ≤ X (t) < x + dx, t ≤ τ | X (0) = x0] , xL ≤ x ≤ xU . (6)

From well-known results in probability theory, see e.g. Refs. [10,29,30], f (t, x) satisfies for t ≥ 0 and xL ≤ x ≤ xU the
Fokker–Planck equation:
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= 0, xL < x < xU (7)
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