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h i g h l i g h t s

• We compute the Wigner kernel by means of stochastic approaches.
• We exploit Monte Carlo integration techniques based on importance sampling.
• The stochastically computedWigner kernel is utilized in the context of signed particles for the time dependent simulation of quantum

systems.
• Single- and Many-body quantum systems are simulated successfully.
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a b s t r a c t

The Monte Carlo approach to numerical problems has shown to be remarkably efficient in
performing very large computational tasks since it is an embarrassingly parallel technique.
Additionally, Monte Carlomethods arewell known to keep performance and accuracywith
the increase of dimensionality of a given problem, a rather counterintuitive peculiarity not
shared by any known deterministic method.

Motivated by these very peculiar and desirable computational features, in this work we
depict a full Monte Carlo approach to the problem of simulating single- and many-body
quantum systems by means of signed particles. In particular we introduce a stochastic
technique, based on the strategy known as importance sampling, for the computation
of the Wigner kernel which, so far, has represented the main bottleneck of this method
(it is equivalent to the calculation of a multi-dimensional integral, a problem in which
complexity is known to grow exponentially with the dimensions of the problem). The
introduction of this stochastic technique for the kernel is twofold: firstly it reduces the
complexity of a quantum many-body simulation from non-linear to linear, secondly it
introduces an embarassingly parallel approach to this very demanding problem.

To conclude, we perform concise but indicative numerical experiments which clearly
illustrate how a full Monte Carlo approach to many-body quantum systems is not only
possible but also advantageous. This paves the way towards practical time-dependent,
first-principle simulations of relatively large quantum systems by means of affordable
computational resources.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In his 1777 pioneering essay known as L’aiguille de Buffon (Buffon’s needle) [1], the french mathematician Georges-Louis
Leclerc comte de Buffon poses, for the first time, the following problem: supposing one drops a needle onto a floor made of
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parallel and uniform strips of wood, what is the probability that the needle lies across a line between two strips?He demonstrated
that the solution is equal to 2l

π t , where l is the length of the needle and t is the distance between each strip. As pointed out
later on by the Marquis Pierre-Simon de Laplace (1886), this approach can be utilized as a practical method to compute the
value of the number π . In fact, by repeatedly throwing a needle onto a lined sheet of paper, and by counting the number
of intersected lines, one can eventually estimate the value of π , a perfect instance of a Monte Carlo method. Afterwards, in
1949, with the advent of computational resources, intensive applications started to be developed in the Manhattan project
by J. von Neumann, E. Fermi, G. Kahn and S.M. Ulam [2]. The legend says that the nameMonte Carlowas eventually suggested
by N. Metropolis in honor of Ulam’s uncle who was a well-known gambler.

Nowadays in computational mathematics, by Monte Carlo or stochastic methods one intends a broad class of methods
which approximate the solution of a given problem by performing random sampling of a certain random variable in
which mathematical expectation coincides with a desired functional of the solution [3]. With the increase of available
computational resources, this very particular approach to applied problems has eventually turned out to be very fruitful,
representing one the most powerful numerical tool in applied mathematics, physics, chemistry and engineering, especially
when deterministic methods hopelessly break down. In fact, unlike their deterministic counterpart, Monte Carlo methods
do not require any additional regularity of the solution and it is always possible to control their accuracy in terms of the
probability error. Furthermore, another important advantage consists in very high efficiency when dealing with very and
extremely large computational problems such as, for instance, multi-dimensional numerical integration, the resolution of
very large linear systems, the simulation of partial integro-differential equations in highly dimensional spaces, etc. Last
but not least, Monte Carlo methods are embarassingly efficient on parallel machines (embarassingly parallel methods).
In consequence, these methods have rapidly found a wide range of applications in an extensive class of scientific and
technological disciplines. Nowadays, Monte Carlo algorithms exist for a plethora of different computational problems (in
both contexts of simulations and numerical solvers) and it is practically impossible to specify a complete list. Of course, this
does not mean that Monte Carlo methods always outperform their deterministic counterparts. In fact there are situations
where, for instance, a finite difference method can provide a better solution than a stochastic method. This happens for
example when a subspace of rare events in the space of solutions cannot be probed with sufficient accuracy by a Monte
Carlo approach. In any case, in this paper we focus on the use of stochastic methods in order to understand what advantages
they can provide in a very particular situation (described below).

One of themost significant and computationally demanding problem in applied physics is represented by the simulation
of many-body quantum systems approached by first principles only [4], a somehow elusive and daunting task and, yet, of
paramount importance for our comprehension of the way Nature works along with the (consequent) development of new
technologies.Manymethods certainly exist, based on themanydifferent approximations introduced. For instance among the
simplest ones, the Hartree–Fock or self-consistent field method [5,6] is based on expressing the many-body wave-function
for Fermions in terms of Slater determinants [7]. More sophisticated approaches, known as post-Hartree–Fock methods,
have been developed as well among which one has, e.g., the configuration interaction method [8], the Møller–Plesset
method [9], various variants of quantum Monte Carlo methods [10–12], etc. In particular, the reader should note that,
although different formulations of quantummechanics are available nowadays [13–15], all mentioned methods rely on the
ability of computingwave-functions in the Schrödinger formalism [16]. Recently, a new formulation of quantummechanics
has been suggested which is based on the concept of signed particles [17]. This novel theoretical framework describes time-
dependent quantum systems bymeans of ensembles of field-less point-like particles providedwith a position, amomentum
and a sign. This is not the first time that classical particles augmented with some quantum variable are utilized to approach
quantum systems (see Ref. [18]). For instance, there is a long history in the development of techniques to solve the Wigner
equation which are based on the concept of particle quantum affinity [19–23] (inspired by the pioneering works [24,25]), a
real valued variable in the range (−∞, 1].

It has been shown that the signed particle formulation, when restricted to a finite and semi-discrete phase-space,
coincideswith the signed particleWignerMonte Carlomethod [26], a numerical approachwhich lately has been extensively
validated in the case of both single- and many-body problems, therefore proving to be a very promising tool [27–29].
This formulation is based on a set of three postulates which completely defines the evolution of a quantum system. These
rules dictate how an ensemble of particles evolves, one particle at a time. The advantages of such an approach have been
thoroughly discussed previously (see, for example, Refs. [17,26]) andmainly consist of (1) being intuitive and, therefore, easy
to implement, and (2) embarassingly parallelizable as signed particles are independent from each other. The only bottleneck
is, thus, represented by the numerical computation of the Wigner kernel which, in essence, coincides with the integration
of a multi-dimensional integral. Usually, the kernel can be calculated analytically only in a few (oversimplified) cases and
one must resort to numerical techniques.

In this paper, we focus on the problemof numerically computing the (highlymulti-dimensional)Wigner kernel. Although,
so far, this problem has been successfully approached by means of deterministic methods (e.g. see Ref. [30]), the authors
firmly believe that stochastic techniques can be applied. Therefore, we introduce the usage of an importance sampling
technique [31] to compute the Wigner kernel in the context of signed particles and show how this introduces crucial
advantages, especially in terms of efficiency and complexity. Indeed, it is well known that a crude Monte Carlo method has
already a rate of convergence which does not depend on the dimensions of a given integral, therefore making the Monte
Carlo approach tomulti-dimensional integration the only practicalmethod for the treatment of theWigner kernel, especially
when a substantial number of bodies is involved in the simulation of a given quantum system [3]. It is certainly possible
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