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h i g h l i g h t s

• We introduce a novel method for combinatorial optimization problems.
• Social imitative mechanisms may allow to find the solution of the TSP.
• Few agents, that partially imitate each other, are able to converge towards the optimal solution of combinatorial optimization problems.
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a b s t r a c t

In this work we introduce an evolutionary strategy to solve combinatorial optimization
tasks, i.e. problems characterized by a discrete search space. In particular, we focus on
the Traveling Salesman Problem (TSP), i.e. a famous problem whose search space grows
exponentially, increasing thenumber of cities, up to becomingNP-hard. The solutions of the
TSP can be codified by arrays of cities, and can be evaluated by fitness, computed according
to a cost function (e.g. the length of a path). Our method is based on the evolution of an
agent population by means of an imitative mechanism, we define ‘partial imitation’. In
particular, agents receive a random solution and then, interacting among themselves, may
imitate the solutions of agents with a higher fitness. Since the imitationmechanism is only
partial, agents copy only one entry (randomly chosen) of another array (i.e. solution). In
doing so, the population converges towards a shared solution, behaving like a spin system
undergoing a cooling process, i.e. driven towards an ordered phase. We highlight that the
adopted ‘partial imitation’ mechanism allows the population to generate solutions over
time, before reaching the final equilibrium. Results of numerical simulations show that our
method is able to find, in a finite time, both optimal and suboptimal solutions, depending
on the size of the considered search space.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the last decades, several evolutionary algorithms [1–4] have been proposed to solve a wide range of optimization
problems [5–7]. Evolutionary strategies are generally based on a common scheme: a set of solutions is randomly generated
then, according to specific rules, it evolves evaluating the quality of solutions by a cost/gain function. Optimization problems
may have a continuous or a discrete spectrum of solutions, defined search space. Here, we focus on discrete cases, usually
referred to as combinatorial optimization problems [8]. The lattermay have a huge amount of feasible solutions, identified as
theminima of the cost function (or as themaxima of a gain function) of the considered problem. The size of the search space
is often too large to adopt an algorithm that explores all solutions to identify the optimal one. One of the aims of quantum
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computing [9] is to implement algorithms that are able to span, in a finite time, huge search spaces not accessible by classical
algorithms. However, in the meanwhile, strategies based on the classical nature of computing play a prominent role. In this
scenario, evolutionary methods such as genetic algorithms [1], and likewise other nature inspired strategies [4,10], allow to
define heuristics that compute, in short time, a good suboptimal solution. As mentioned, in mathematical terms, an optimal
solution corresponds to the globalminimum/maximumof a cost/gain function. Therefore, the search space of these problems
can be represented by an n-dimensional cost/gain function, having a continuous or a discrete domain. In this work, we focus
on the Traveling Salesman Problem (TSP hereinafter) [11], a well-known problem with a discrete search space that, under
opportune conditions, become NP-hard. Briefly, the TSP is based on a traveler who wants to visit a list of cities reducing the
relative cost as far as possible (e.g. the time or other resources). Hence, optimizing algorithms (e.g. Refs. [11,12]) attempt to
compute the best path among the listed cities. Here, the best path is the one that optimizes a function (i.e. minimizing a cost
or maximizing a gain). Increasing the number of cities, the number of feasible solutions diverges to very high values. Thus
in extreme conditions even to find a good local minimum (i.e. a sub-optimum) becomes a challenging task. In particular, if
every city can be visited only once, and if all cities are directly connected, the amount of feasible solutions corresponds to
the factorial of the number of cities. For instance, with only 10 cities there are 10! possible paths, i.e. more than 3.6 ·106. The
solutions of the TSP can be codified by array structures containing an ordered list of cities, so that each entry of the array
corresponds to a city.We aim to face the challenge of finding the optimal (or a good suboptimal) solution of the TSP bymeans
of an agent population, whose evolution is based on an imitativemechanism described below. Imitation processes [13] have
been thoroughly investigated in several scientific fields, from social psychology [14] to sociophysics [15,16] and quantitative
sociology [17]. For example, a wide variety of Ising-like models [18–20], such as the voter model [21], allow to represent
imitativemechanisms in the context of opinion dynamics [16,22,23], evolutionary games [24–27], andmany other domains.
In the proposed model, agents of a population are provided with randomly generated solutions of a TSP. As stated above,
the fitness of each solution is computed by a cost function. Then, through interacting, agents can imitate better solutions
(according to fitness). Now, note importantly that the implemented imitative mechanism is partial, hence defined ‘partial
imitation’, since it entails that each agent copies only one entry of a solution better than its own. Thus, since a solution is
codified by an array, ‘partial imitation’ involves copying the value contained in just one entry. In doing so, aswe explain later,
the agent population can generate solutions during its evolution and, finally, converges towards a common one (i.e. shared
by all agents).

A statistical physics overview

At this point, note that our population behaves like a spin system undergoing a cooling process. This implies that, at
equilibrium, an ordered phase will be reached, with all spins aligned in the same direction. In particular, spin systems show
order–disorder phase transitions [19] driven by temperature: at high temperatures they form a disordered paramagnetic
phase,while at low temperatures (i.e. lower than a critical one, also defined as ‘Curie temperature’) an ordered ferromagnetic
phase emerges. Order–disorder phase transitions are well studied in Ising-like models, for instance to analyze the evolution
of two-opinion systems [28] in the presence of external influences (e.g. media), particular behaviors (e.g. conformity or
stubbornness), or other attributes (e.g. gain) provided to agents. As a result, simple two state models (σ ± 1), can be
studied analytically using the Curie–Weiss model formalism [19,29], so that the phenomenon of order–disorder transitions
is well described. According to thermodynamics [19], the equilibrium of a system corresponds to the minimum of its free
energy F . In the Curie–Weiss model we have a paramagnetic phase characterized by one minimum of F , where both states
(i.e. σ = ±1) coexist, and a ferromagnetic phase with two possible minima of F , corresponding to σ = +1 and to σ = −1.
Therefore, in the ferromagnetic phase all spins are aligned in one direction. Here, the systemmagnetizationM [18] is a useful
order parameter that allows to directly evaluate the nature of an equilibrium. It is defined as

M =
1
n
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with n number of spins. A more complex scenario arises when studying the dynamics of spin glasses [30] (e.g. neural
networks [31]). In particular, spin glasses are systems characterized by a large number of free energy minima at low
temperatures. Because of the topology of spin interactions several configurations, usually referred to as patterns [32],
can be reached at equilibrium. In these systems, the concept of order–disorder phase transition is a little more complex.
In particular, an ordered state does not correspond to the simple series of aligned spins, but to a particular pattern ϵ,
e.g. ϵ = [+1, +1, −1, +1, −1]. As discussed before, system magnetization makes it possible to detect the nature of a
system state [33]. Thus values of M close to zero indicate that the system is in a disordered (paramagnetic) phase, while
values ofM = +1 andM = −1mean the system is in an ordered (ferromagnetic) phase. Now, by using the so-called Mattis
gauge, we can define a magnetization m that evaluates whether a system is ordered according to a particular pattern. The
Mattis magnetization reads

m =
1
n


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with ϵi value in the ith position of the pattern, si value of the spin in the same position of a signal S of length n. As we can
observe, when spins are perfectly aligned with a pattern ϵ, the Mattis magnetization is 1. Note that our population cannot
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