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h i g h l i g h t s

• A rewiring algorithm for enhancing the synchronization capacity for networks of Kuramoto oscillators is proposed.
• The synchrony-optimized networks are robust and typically exhibit an anticipation of the synchronization onset.
• The main results are applied to the synchronization problem in large power grids.
• We study synthetic random networks and also a network with a topology approximating the (high voltage) power grid of Spain.
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a b s t r a c t

We investigate synchronization in networks of Kuramoto oscillators with inertia. More
specifically, we introduce a rewiring algorithm consisting basically in a hill climb scheme
in which the edges of the network are swapped in order to enhance its synchronization
capacity. We show that the synchrony-optimized networks generated by our algorithm
have some interesting topological and dynamical properties. In particular, they typically
exhibit an anticipation of the synchronization onset and are more robust against certain
types of perturbations. We consider synthetic random networks and also a network with a
topology based on an approximated model of the (high voltage) power grid of Spain, since
networks of Kuramoto oscillatorswith inertia have been used recently as simplifiedmodels
for power grids, for which synchronization is obviously a crucial issue. Despite the extreme
simplifications adopted in thesemodels, our results, among others recently obtained in the
literature, may provide interesting principles to guide the future growth and development
of real-world grids, specially in the case of a change of the current paradigm of centralized
towards distributed generation power grids.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction 1

Since Thomas Edison’s Pearl Street Station in Manhattan started operating in 1882, the power grids have continued 2

to grow and are today probably the largest machines ever built [1,2]. Their growth is still far away from being complete, 3

since the pursuit of renewable sources of energy and new technologies drive the integration of different power grids into 4

continental machines as, for instance, the paradigmatic case of Western Europe. (For an approximated description of the 5

western European interconnected high voltage power grid, see Refs. [3,4].) The widespread use of alternating current 6
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creates the necessity of keeping the whole power grid synchronized, and a disruption in this synchronization may cause1

malfunctioning, leading to power outages with possible catastrophic proportions in real scenarios.2

The phenomenon of synchronization has been studied for a long time [5–8] in different areas of knowledge. It is present3

in a myriad of situations, arising naturally in many areas of biology, physics, social sciences, etc. However, It has been only4

recently that a complex system approach has been devised to study the synchronization of power grids [9] (see also, for a5

recent review, [10]). Typically, a single power plant is a complicatedmachine, with a lot of tunable parameters necessary for6

its correct functioning. Although power grids can be, and surely are, analyzed and studied in all their finer details, taking into7

account hundreds of power plants, substations, transmission lines, and many other devices, the idea here is to focus on the8

complexity of the underlying network of connections [11,12] and its role on the overall synchronization process. In order9

to achieve such a goal, one treats the power plants as simple generators and the loads on the other side of transmission10

lines as passive machines. Energy balance in this context yields a set of equations known as the Kuramoto Model with11

inertia [8]. Recently, we have witnessed many works devoted to the analysis of power grids in this context of complex12

system as, for instance, the analysis of the European power grid [13], the effects of decentralization of energy production13

in the British power grid [14], the identification of parameters in individual vertices that turn the synchronous state more14

stable [15], the existence of Braess’ paradox [16,17], the role of the topology [18–20] and assortative mixing [21] on the15

network synchronization and control, and a stability analysis of blackouts using basin-stability measures [22].16

In this paper, we study the optimization, in order to favor synchronization, of networks of Kuramoto oscillators with17

inertia modeling power grids. More specifically, we adapt an algorithm previously proposed in Refs. [23,24] to optimize18

the synchronization capacity of a network built from usual Kuramoto oscillators to the case of oscillators with inertia. We19

study the main topological and dynamical properties of the synchrony-optimized networks generated by our algorithm20

and their robustness for edges (corresponding to transmission lines) removal and other perturbations which could mimic21

consumption peaks (or generation shortages) in real power grids. Our results show that the optimized networks tend to be22

more robust against the perturbations mimicking consumption peaks for a wider range of parameters when compared to23

the non-optimal networks, and no differences were detected with respect to edge removals.24

The paper is organized as follows. In Section 2, we review briefly the power grid model based on Kuramoto oscillators25

with inertia [9] and discuss some of its properties with relevance to our analysis. Section 3 is devoted to the introduction of26

our optimization algorithm. In Section 4, we show the numerical results obtained for synthetic random networks and also27

for a network topologically based on an approximation of the Spanish high voltage power grid.28

2. Kuramoto oscillators with inertia29

For the sake of completeness, we will briefly review here the basic equations for the Kuramoto oscillators with inertia30

used in Ref. [9] for a simplified description of power grids. Our main goal is to derive some simple results concerning the31

synchronization of the underlying network which are important to our analysis. In this simplified description, a power grid32

is represented by an undirected network composed of N = NG + NC vertices corresponding to two types of machines: NG33

generators and NC consumers (motors), which do not need to be equal in number necessarily. The power transmission lines34

correspond to them edges connecting the vertices. The connectivity pattern is described by the usual symmetric adjacency35

matrix A, with elements aij such that aij = 1 if vertices i and j are connected, and aij = 0 otherwise.36

Each individual element i of the network corresponds to a synchronous machine, generator or consumer, characterized37

by a power P̃i, which is positive for generators and negative for the consumers. For each network vertex, simple energy38

balance implies that this power must be equal to the sum of three contributions: the rate of change of the machine kinetic39

energy40

Pkin
i = Iiθ̈iθ̇i (1)41

where Ii and θi stand for, respectively, the moment of inertia and the phase of the ith generator/consumer; the rate at which42

energy is dissipated through friction43

Pdiss
i = γiθ̇

2
i , (2)44

whereγi is the dissipation constant associatedwith themachine at vertex i; and the total power transmitted to other vertices.45

In particular, the power transmitted from vertex i to j is given by46

P trans
ij = −Pmax

ij sin(θj − θi), (3)47

where Pmax
ij represent the maximum power that can be transmitted along the transmission line connecting i and j vertices.48

Summing all terms, one has49

P̃i = Iiθ̈iθ̇i + γiθ̇
2
i −

N
j=1

Pmax
ij sin(θj − θi). (4)50

Fromnowon,we restrict ourselves to the idealization often assumed for power grids in this context, namely that all elements51

in the grid have the same moment of inertia I and the same dissipation constant γ , and that all transmission lines have the52
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