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a b s t r a c t

Based on a classical contact model, the spreading dynamics on scale-free networks
is investigated by taking into account exponential preferentiality in both sending out
and accepting processes. In order to reveal the macroscopic and microscopic dynamic
features of the networks, the total infection density ρ and the infection distribution ρ(k),
respectively, are discussed under various preferential characters. It is found that no matter
what preferential accepting strategy is taken, priority given to small degree nodes in the
sending out process increases the total infection density ρ. To generate maximum total
infection density, the unbiased preferential accepting strategy is the most effective one.
On a microscopic scale, a small growth of the infection distribution ρ(k) for small degree
classes can lead to a considerable increase of ρ. Our investigation, from both macroscopic
and microscopic perspectives, consistently reveals the important role the small degree
nodes play in the spreading dynamics on scale-free networks.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Preferentiality exists widely among social networks. For instance, advertisers prefer to use celebrities as spokespersons
for their products in order to popularize their brand and enlarge their sale market. Therefore preferentiality does indeed
influence the spreading process, and should be taken into account in the spreading dynamics on networks. As a typical
example, epidemic spreading [1–12] has been studied extensively to understand the spreading dynamics on real networks
since the discoveries of small-world [13] and scale-free [14] networks [15,16]. These investigations were mainly based on
susceptible-infected (SI) [7,8], susceptible-infected-susceptible (SIS) [10,11], and susceptible-infected-removed (SIR) [3,12]
models. Studies on scale-free networks showed that topological heterogeneity leads to exceptional features such as the
absence of an epidemic threshold [11]. Besides the essential features of threshold [9–11], further applications such as
how to restrain the spreading of computer viruses on the Internet by immunization are also highly investigated. Targeted
immunization [6] and acquaintance immunization [17] have been demonstrated as two effective immunization strategies.
On the other hand, close attention is also paid to issues such as how to boost spreading efficiency by adopting some special
spreading strategies so that it can be applied to systems such as broadcasting. Zhou et al. [7] introduced a fast spreading
strategy, i.e. SI model, and found that the preference on small degree nodes is more efficient than that on large degree
nodes. Yang et al. [18] investigated the spreading dynamics on the basis of a contact process model, and revealed that
frequently choosing small degree nodes leads to a large infection spreading. They studied the infection density of the whole
network macroscopically, given a power law kβ of preferentiality governing the spreading process [7,18,19]. While in some
systems, the preferentialitymay dependmore strongly on node degree. To explore the dynamic process in these systems,we
study the spreading process on scale-free networks governed by an exponential law of preferential strategy eβk describing
the stronger dependence of preferentiality on nodes of different degrees. The evolution of infection density for nodes with
different degrees under various preferential characters is presented and discussed. The important role small degree nodes
play during the spreading process is confirmed.
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2. Model and analysis

Our model, which is parallel concerning its dynamic simulation, is based on the classical contact process (CP) [20,21]
on a scale-free network, in which each node is either infected or susceptible to infection. Initially, a fraction ρ0 of nodes
on the network are infected and each infected node is marked by one particle on it. In each evolution step, the particle
will perish with probability p, or survive with probability 1 − p and generate a new particle in order to infect one of its
neighboring nodes. One complete contact process is composed of a sending out process and an accepting process [18,19],
with probabilities that are both exponentially degree-dependent. Suppose node i is occupied by a surviving particle at the
time step t , then, a newly generated particle will be passed to one of its neighboring nodes j of degree kj with probability

φout =
eβkj∑

l∈Vi
eβkl

. (1)

Here Vi denotes all the neighbors of node i, and the sending out parameter β denotes the preferential character. That is, if
β > 0, a neighbor with large degree is more likely to be chosen as the target; while if β < 0, that with small degree is
more likely to be infected; β = 0 corresponds to the unbiased preferential strategy (φout = 1/Vi). Besides the sending out
process, the accepting process is also governed by preferentiality [18]. Given α as the accepting parameter, we assume that
the target node jwill accept the new particle from node i following a probability

φin =
eαki

max(eαkm | m ∈ Vj)
. (2)

Here, Vj denotes all the neighbors of node j. If α > 0, a target prefers to accept one new particle from a neighbor with large
degree; if α < 0, a new particle from a small degree neighbor is more welcome; while if α = 0, the preference is unbiased
(φin = 1). Moreover, it is clear from Eq. (2) that an unbiased accepting strategy (α = 0) leads to a maximum total infection
density, as for α = 0, φin = 1 for all new particles from neighbors of various degrees k; while for α 6= 0, φin < 1 for all new
particles expect those from neighbors of the maximum degree kmax when α > 0 and those from neighbors of the minimum
degree kmin when α < 0, indicating that exponentially biased accepting, as given by Eq. (2), plays a negative role in the
spreading process. Therefore, as a complete spreading process, a newly generated particle will move from the infected node
i to the target node jwith probability φ = φout ·φin. Each infected or susceptible node can act as a target, and can be selected
by several infected neighbors in one evolution step. However, within each step, new particles accepted by an infected target
are wasted, and several new particles accepted by a susceptible target play the same role as one new particle.
As the spreading takes place through a contact between infected nodes and their neighbors, the neighboring degree

distribution, not just the degree distribution of the whole network, plays an important role during the contact process.
By introducing the conditional probability P(k′|k) that a node of degree k is connected to a node of degree k′ [22], the
total number of links between nodes of degree kA and nodes of degree kB can be written as L(kA, kB) = NP(kA)kAP(kB|kA).
For an uncorrelated network, such as the Barabási–Albert (BA) model [14], where P(k′|k) = k′P(k′)/〈k〉 [23], one obtains
L(kA, kB) = NP(kA)kAkBP(kB)/〈k〉. As the amount of nodes of degree kA takes the form N(kA) = NP(kA), each node of degree
kA averagely has

n(kA, kB) =
L(kA, kB)
N(kA)

=
1
〈k〉
kAkBP(kB) (3)

neighbors of degree kB. Since the degree distribution of the BAmodel takes the power law form P(k) ∼ k−γ with γ = 3 [14],
the neighboring degree distribution for a given degree kA also scales as a power law n(kA, kB) ∼ kB−2, indicating that a node,
whatever its degree is, averagely has much more neighbors of small degrees than those of large degrees.
On the other hand, preferential characters are key factors impacting the spreading dynamics. Fig. 1 shows the average

sending out priority varying with the sending out preference. The average sending out priority σout(kA, kB) from an infected
node of degree kA to a neighboring node of degree kB is expressed as

σout(kA, kB) =
eβkB∑

kB

L(kA,kB)
N(kA)

eβkB
, (4)

where L(kA, kB)/N(kA) denotes the average number of links from a node of degree kA to that of degree kB. As∑
kB

L(kA, kB)
N(kA)

= kA, (5)

when the sending out process is unbiased, i.e. β = 0, σout(kA, kB) = 1/kA, indicating that σout(kA, kB) is equal for all the
neighbors (Fig. 1(a)). When β > 0, preference on large degree neighbors leads to amonotonous increase of σout(kA, kB)with
kB for a given degree kA (Fig. 1(b)). When β < 0, neighbors with small degrees aremore likely to be chosen as the target, and
σout(kA, kB) decreases monotonously with kB for a given kA (Fig. 1(c)). Strong preferentiality, represented by a large value of
β , leads to intense divergence in the sending out priority among neighbors with different degrees.
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