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h i g h l i g h t s

• A new method for inference in the inverse Ising problem.
• The accuracy of the inference by our method is similar to that by pseudolikelihood method.
• The required computational task of the inference is less than that of pseudolikelihood method.
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a b s t r a c t

We consider inference in the inverse Ising problem using full data, which means incor-
porating sets of spin configurations. We approximate the Boltzmann distribution of the
system to generate a frequency distribution derived from the given data. Then, the ratio
between two Boltzmann distributions with different spin configurations eliminates the
partition function and we obtain linear equations which can be solved to yield statistical
parameters. Our method is applicable to cases where the absolute values of the coupling
parameters and external fields are large. Compared to pseudolikelihoodmaximization, the
accuracy of the inference obtained from our method is similar, although our approach is
less labor intensive.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The connection between computer science and statistical physics is increasing on a daily basis [1,2]. Among the many
subjectswhich attract both computer scientists’ and physicists’ attention, the study of neural networks has a long history [1].
The neural network has been recognized as a purely computationalmodel rather than amodel imitating the brain. The neural
network as a computational model is roughly divided into two classes: a feedforward neural network and a feedback neural
network. In the feedforward neural network, signals are passed through the layers of the neural network in a single direction
while, in the feedback neural network, signals are passed through the units of the neural network in interactive directions.
Furthermore, the feedback neural network models can be roughly classified as being based on the Hopfield network or the
Boltzmann machine. In the Hopfield network, the state of a unit of the neural network is renewed obeying a deterministic
rule, but this according to a stochastic rule in the Boltzmann machine [3,4]. Because of the likeness between the Boltzmann
machine and the spin glass model in statistical physics, the Boltzmann machine is of particular interest to physicists.

For the Boltzmann machine to achieve the expected performance, we must determine its statistical parameters in ad-
vance. The determination of the statistical parameters of the Boltzmann machine from observed data corresponds to ma-
chine learning from the viewpoint of computer science or an inverse Ising problem from a physics perspective. The inverse
Ising problem has attracted much attention from physicists. In a direct problem, provided that the Boltzmann distribution
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is given, various statistics such as on-site magnetization and correlation between Ising spins are evaluated using a proba-
bility distribution. In an inverse problem, the statistical parameters of the Boltzmann distribution are evaluated using given
statistics, i.e., sets of data, and, in statistical science, the inference of statistical parameters relies on a maximum likelihood
estimation. Also, for the inverse Ising problem, the maximum likelihood estimation of statistical parameters is effective.
However, a daunting computational workload is involved in the estimation of the statistical parameters. The likelihood
function is represented by the Gibbs free energy of the Boltzmann machine, and, therefore, the inference of statistical pa-
rameters leads to evaluation of the Gibbs free energy. When the number of constituents of the system is large, evaluation of
the Gibbs free energy requires considerable computation. In order to estimate statistical parameters, approximatemethods,
which have been developed in physics, have been applied to the inverse Ising problem [5–15]. However, these methods
restrict the efficacy of the inference of statistical parameters from given data owing to coverage of approximations.

As a reliable inference method for the inverse Ising problem, pseudolikelihood maximization (PLM) has attracted
much attention recently [16–20]. In PLM, the likelihood function is replaced with an approximate likelihood, so that PLM
avoids the large computational cost involved in evaluation of the likelihood function. In addition, it has a wider range of
applicability than other approximate methods. In the present paper, we propose an alternative inference method for the
inverse Ising problem. Our method has the property that the accuracy of the inference is similar to that of PLM, although
the computational cost of determining the inference is less.

2. Theory

We consider a graph G = (V, E), which consists of a set of vertices, V , labeled by {1, 2, . . . ,N}. Each vertex is connected
to another vertex by an element of a set of edges, E . An edge joining vertices i and j is represented by e = (i, j), where e ∈ E .
Given the graphG, we consider amodel where an Ising spin, si ∈ {±1}, is situated on the ith vertex. The energy of the system
is given by

E = −


(i,j)∈E

Jijsisj −

i∈V

hisi, (1)

where Jij corresponds to a coupling parameter between si and sj, and hi is an external field applied to si. In the case that no
edge exists between the ith and jth vertices, the value of Jij becomes zero. For the sake of simplicity, we define a set of Ising
spins as s = (s1, s2, . . . , sN), and name it a spin configuration. We assume that the probability of the system being found in
s is given by the following Boltzmann distribution:

P(s|{Jij}, {hi}) =
exp[−βE(s)]
Z(β, {Jij}, {hi})

, Z(β, {Jij}, {hi}) =


i∈V


si=±1

exp[−βE(s)], (2)

where β is inverse temperature and, in order to explicitly show the dependence of the energy on s, we represent the energy
of the system by E(s). The expectation values such as the on-site magnetization and correlation between Ising spins are
evaluated using the Boltzmann distribution of Eq. (2). The expectation values depend on the coupling parameters, {Jij}, and
external fields, {hi}.

In the inverse problem, the coupling parameters and the external fields are estimated using the given data. We consider
the case in whichM sets of the Ising spin configurations, {s(1), s(2), . . . , s(M)

}, are given as the data, which are generated by
an independent identical Boltzmann distribution, P(s|{Jij}, {hi}). We infer the coupling parameters and the external fields
from these data. For the inference, the maximum likelihood estimation is useful. Given {s(1), s(2), . . . , s(M)

}, we define a
histogram corresponding to a frequency distribution function, such that

Q (s) =
1
M

M
µ=1

δ(s, s(µ)), (3)

where δ(s, s′) is the Kronecker delta, which is equal to 1 when s = s′ and 0 when s ≠ s′. With the frequency distribution
function, we define the log-likelihood as

L(β, {Jij}, {hi}) =


i∈V


si

Q (s) ln P(s|{Jij}, {hi}),

=
1
M

M
µ=1

β


(i,j)∈E

Jijs
(µ)

i s(µ)

j +


i∈V

his
(µ)

i


− log Z(β, {Jij}, {hi}). (4)

To find {Ĵij} and {ĥi}, which maximize the log-likelihood, Eq. (4), we differentiate this equation with respect to Jij or hi and,
respectively, find

1
M

M
µ=1

s(µ)

i s(µ)

j =
1

Z(β, {Jij}, {hi})

1
β

∂Z(β, {Jij}, {hi})

∂ Jij
, (5)
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