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a b s t r a c t

In recent times singlemolecule experiments have shown the importance of internal friction
in biopolymer dynamics. Such studies also suggested that the internal friction although
independent of solvent viscosity has a strong dependence on denaturant concentration.
In addition, recent simulations showed that the weak interactions contribute to the
internal friction in proteins. In this work we made an attempt to investigate how a single
polymer chain with internal friction undergoes reconfiguration and looping dynamics in
a confining potential that accounts for the presence of the denaturant, by using recently
proposed ‘‘Compacted Rouse with internal friction’’. We also incorporated the effect of
hydrodynamics by extending this further to ‘‘Compacted Zimm with internal friction’’. All
the calculations are carried out within the Wilemski Fixman framework without invoking
excluded-volume effect. By changing the strength of the confinement wemimicked chains
with different degrees of compactness at different denaturant concentrations. While
compared with experiments our results are found to be in good agreement.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In recent past there have been efforts based on single molecule experiments to elucidate the role of internal friction
in protein folding [1,2]. These single molecule experiments showed internal friction to play a significant role in folding
especiallywhen the protein startswith amore compact unfolded state. Among the different types of experiments carried out
to study the dynamics of the unfolded proteins, themost common one is a combination of Förster resonance energy transfer
(FRET) and nanosecond Fluorescence correlation spectroscopy (nsFCS), where two residues n andm of a protein are labelled
with fluorescence probes and the fluctuation of the distance between them is observed from the efficiency of energy transfer.
An auto-correlation function is then calculated from the distribution, which eventually gives a characteristic relaxation time,
also called the reconfiguration time (τnm) [1]. In another type of fluorescence experiment, two different residues of a protein
are again tagged with a fluorescence quencher and donor. The time required for the donor to be quenched which happens
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only within a certain distance, gives an estimation of loop formation time (τnm,loop) in a protein [3]. Both the time scales, τnm
and τnm,loop seem to have a nonzero intercept when plotted against the solvent viscosity. This residual reconfiguration or
looping time has been attributed to ‘‘internal friction’’ which is presentwithin the protein and assumed to be independent of
the solvent around. Unfortunately a molecular picture of this internal friction is still lacking, but it is believed that dihedral
rotations, hydrogen bonding and other weak interactions contribute to internal friction. Recent simulations on proteins
support such propositions as well [4–7]. This also tells why internal friction is more when the protein is in more compact
unfolded state. Though the notion of ‘‘internal friction’’ is not very old in the chemical physics community [8,9], it has always
been a topic of research among polymer rheologists [10–12]. For example Rabin and Öttinger looked at the origin of internal
viscosity in a Gaussian chain [10,11]. Following an idea of de Gennes [13] they derived an expression for the relaxation
time, τrel associated with internal viscosity as τrel = R3/kBT (ηs + ηi) where, R = aNν and a, N are the monomer size and
chain the length respectively, ν is the Flory exponent [14–16]. Therefore in the limit solvent viscosity ηs → 0, it has a
non-zero intercept proportional to the internal viscosity ηi. This is in the same spirit as that of Khatri and McLeish [17],
where a modified Rouse model gives a mode relaxation time which is dependent on internal friction, τ RIF

p = τ R/p2 + τint .
Such a model gives a reconfiguration time between any two monomers n and m as τnm ≃ 0.82τ R

+ τint [18], where τ R

is the rouse time, proportional to the solvent viscosity. Although such a model qualitatively can predict the trend of the
variation of reconfiguration time as a function of solvent viscosity and produce a non-zero intercept but cannot account for
the changes in ‘‘internal friction’’ at different degrees of compactness encountered in experiments [19,20]. It is expected that
the protein experiences different level of ‘‘internal friction’’ at different concentrations of the denaturant as the compactness
of it changes. This can be seen from the plots of the reconfiguration time [2] against the solvent viscosity at different
denaturant concentrations where the intercepts give the time scale due to ‘‘internal friction’’. The higher the denaturant
concentration the smaller the intercept. In the present study we extend recently proposed models [18,21] to include the
effect of the compactness of the polymer chain to internal friction by introducing a confining harmonic potential to each
monomer of the chain which accounts for the change in chain conformation due to denaturant. At a lower denaturant
concentration chain is more compact so the confining potential is steeper, but as the denaturant concentration increases
the confining potential becomes shallower. With this model, the looping dynamics is studied withinWilemski Fixman (WF)
framework [22] assuming the polymer chain to be Gaussian. Loop formation between any two parts of a bio-polymer is
supposedly the primary step of protein folding, DNA cyclization [23–25]. It is worth mentioning that WF formalism seems
to work fine here and has been used to calculate the same in presence of hydrodynamic interactions by Chakrabarti [26] and
the effect of viscoelastic solvent [27,28]. The method has also been used in the past extensively [29–34] to investigate other
aspects of the polymer looping problems. We would also like to point out that the effects of excluded-volume interaction
are not accounted for in our calculations and so the influence of compactness does not include slowing down due to
entanglement effects.

The paper is arranged as follows. The details of the polymer models are given in Section 2. Section 3 deals with the
methods. Results and discussions are represented in Section 4. Section 5 is the conclusion.

2. Polymer model

In the Rousemodel, a polymer chain is imagined as a series of Brownian particles connected by harmonic springs with no
hydrodynamic interactions and excluded volume effect [35,36]. If Rn(t) is the position of the nth monomer at time t , where
n can be varied from 0 to N , then the dynamics of the Rouse chain with (N + 1) monomers is described by the following
equation of motion

ζ
∂Rn(t)

∂t
= k

∂2Rn(t)
∂n2

+ f (n, t) (1)

where ζ is the friction coefficient and k =
3kBT
b2

is the spring constant with Kuhn length b. f (n, t) is the random force with
moments

⟨f (n, t)⟩ = 0,

fα(n, t1)fβ(m, t2)


= 2ζkBTδαβδ(n − m)δ(t1 − t2). (2)

A standard procedure to treat such a system is to describe the dynamics in the form of normal modes (Xp)

ζ R
p
dXp(t)
dt

= −kRpXp(t) + fp(t). (3)

Here, ζ R
p = 2 Nζ for p > 0 and ζ R

0 = Nζ . The relaxation time of pth mode is τ R
p =

ζR
p

kRp
=

τR

p2
and kRp =

6π2kBTp2

Nb2
. The slowest

relaxation time τ R
=

N2ζb2

3π2kBT
is called Rouse time.

Rouse model does not take into account the effects of hydrodynamic interactions. The simplest possible model which
takes care of it, is due to Zimm [35,36]. It is possible to show that in θ condition under pre-averaged hydrodynamic
interaction, the Zimm chain can be described by the same Eq. (3) but with a different scaling of friction co-efficient including
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