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h i g h l i g h t s

• Investigate the scaling structures in Chinese stock markets and US stock markets by performing modified MMAmethod.
• Focus on the distribution histograms of Hurst surface.
• Allow the assessment of more universal and subtle scaling characteristics.
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a b s t r a c t

Here we propose the new method DH-MMA, based on multiscale multifractal detrended
fluctuation analysis(MMA), to investigate the scaling properties in stock markets. It is
demonstrated that our approach can provide a more stable and faithful description of the
scaling properties in comprehensive range rather than fixing the window length and slide
length. It allows the assessment of more universal and subtle scaling characteristics. We
illustrate DH-MMA by selecting power-law artificial data sets and six stock markets from
US and China. The US stocks exhibit very strong multifractality for positive values of q,
however, the Chinese stocks show stronger multifractality for negative q than positive q. In
general, the US stock markets show similar behaviors, but Chinese stock markets display
distinguishing characteristics.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Financial markets are considered to be extremely complex dynamical systems with a large number of interacting units
such as traders, banks, mutual funds and assets. The dynamics of financial markets is difficult to understand due to the
complex structure. It is widely accepted that financial markets illustrate strong signs of complexity, volatility clustering,
power-law and multifractality [1–14]. Multifractality is a well known characteristic of complex dynamics such as DNA
sequences, heart beat rate, weather records, financialmarkets, sunspot numbers [15–19]. Multifractal detrended fluctuation
analysis (MF-DFA) method [20–22] is a universal tool to investigate multifractality, which is a multifractal generalization of
the detrended fluctuation analysis (DFA) method [15].

Based on the former studies, the fluctuation scaling of monofractal time series may be described by a single exponent,
and in most cases, the scaling of multifractal time series is interpreted by two coefficients. However, it is not adequate
to describe the dynamical behaviors of time series by using one single or two scaling exponents. In order to avoid errors
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Fig. 1. (a) The distribution of Hurst surface h(q, s) versus scaling exponents H for random series. The h(q, s) is evaluated with parameters Q = [−20 : 1 :

20], S = [10 : 1000, 30], WL = 8 and SL = 4. The red line is Dh1 . (b) Scaling exponents H as a function of different cases of WL and SL. Different colors
represent values of Dhi , i = 1, 2, . . . , 140. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

due to improperly predefined scaling ranges, and to obtain all information among the entire time scales, J. Gierałtowski
et al. [24] generated a new method called multiscale multifractal detrended fluctuation analysis (MMA) for solving the
upper problem. This new technology allows us to investigate not only the multifractal properties but also dependence of
these properties on the time scale. MMA has successfully been applied to diverse fields such as heart rate dynamics [25],
economics time series [26] and traffic dynamics [27]. In this paper, we decide to go further and discuss more details about
the scaling behaviors based onMMAmethod. The objective of the present work is the development of methodology and the
evaluation of multifractal scaling behaviors of stock markets by modified MMA technique. MMA results are presented as
Hurst surface, thus we focus on the distribution histogram of Hurst surface to quantify the multifractal scaling properties of
stockmarkets. Hence, our results aremore stable and robust. Such informationwould be very useful for investors to correctly
assess the risk in investments and also for policy makers to make the appropriate decisions. In the future wemay also apply
some machine learning techniques for the purpose of stock market data analysis, such as techniques used in Refs. [28,29].

The organization of this paper is as follows. Section 2 presents methods employed in study. Section 3 describes the data
sets used in our work. Section 4 is devoted to show the results by employing our modified approach. Section 5 gives the
conclusions.

2. Methodology

2.1. MF-DFA method

The multifractal detrended fluctuation analysis (MF-DFA) method was developed by Kantelhardt et al. [20] for the
multifractal characterization of non-stationary time series.MF-DFA is a generalization of the Detrended Fluctuation Analysis
(DFA) method. MF-DFA method can be described as follows. Let us suppose that xt is a series of length N , and this series is
of compact support, i.e. xt = 0 for an insignificant fraction of the values only. The corresponding profile Y (i) is computed
by integration as

Y (i) =

i
t=1

(xt − ⟨x⟩), i = 1, 2, . . . ,N. (1)

Cut the profile Y (i) into Ns ≡ [N/s] non-overlapping segments of equal length s. Since the record length N need not be
a multiple of the considered time scale s, a short part at the end of the profile will remain in most cases. In order not to
disregard this part of the record, the same procedure is repeated starting from the other end of the record. Now the local
trend yν(i) for each 2Ns segments is determined by the least square fit and then the variance is calculated using

F 2(s, v) =
1
s

s
i=1

{Y [(ν − 1)s + i] − yν(i)}2 (2)

for ν = 1, 2, . . . ,Ns and

F 2(s, v) =
1
s

s
i=1

{Y [N − (ν − Ns)s + i] − yν(i)}2 (3)



Download English Version:

https://daneshyari.com/en/article/974104

Download Persian Version:

https://daneshyari.com/article/974104

Daneshyari.com

https://daneshyari.com/en/article/974104
https://daneshyari.com/article/974104
https://daneshyari.com

