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h i g h l i g h t s

• We study scaling properties of a family of nonlinear discontinuous maps.
• This family is the discontinuous-map representation of well-known nonlinear systems.
• The exponent characterizing the family of maps defines universality classes.
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a b s t r a c t

Scaling exponents that describe a transition from integrability to non-integrability in a fam-
ily of two-dimensional, nonlinear, and discontinuousmappings are obtained. Themapping
considered is parameterized by the exponent γ in the action variable. The scaling expo-
nents describing the behavior of the average square action along the chaotic orbits are ob-
tained for different values of γ ; therefore classes of universality can be defined. For specific
values of γ ourmapping acts as the discontinuous-map representation ofwell-knownnon-
linear systems, thus making our study broadly applicable. Also, the formalism used is gen-
eral and the procedure can be extended to characterize many other dynamical systems.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction and model

Parametric Hamiltonians H(K) appear frequently in the study of physical problems of interest, both in the classical and
quantum domains, where the change of K may represent the effect of an external field (electric field, magnetic flux, gate
voltage) or a change of an effective interaction (as in many body systems). In general, when the perturbation is small H(K)
can be split in two parts: H0 representing the unperturbed system, whose dynamics could be integrable or non-integrable,
and H1 representing the perturbation parameterized by K ; that is, H(K) = H0 + KH1.

In particular, for a two-dimensional (2D) classical system given in action–angle variables H(K) takes the form [1]

H(K , I1, I2, θ1, θ2) = H0(I1, I2) + KH1(I1, I2, θ1, θ2). (1)

Here, since H0 is assumed to be integrable, K controls the transition from integrability to non-integrability. In fact, a very
useful approach to study the dynamics of H(K) in Eq. (1) is to consider a Poincaré section defined by the plane I1 × θ1
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taking θ2 as constant (mod 2π). Then, the generic 2D (Poincaré) mapping which qualitatively describes the behavior of
H(K) reads [1]

MK :


In+1 = In + Kf (θn, In+1),
θn+1 = [θn + g(In+1) + Kh(θn, In+1)] mod (2π),

(2)

where f , g , and h are assumed to be nonlinear functions, n is the nth iteration of the mapping, and the variables I and θ
correspond indeed to I1 and θ1, respectively.

MappingMK is very general, so depending on the choice of the nonlinear functions (f , g , and h) its dynamicsmay represent
a wide range of different physical systems. As examples, we can mention some well known mappings having in common
the choice of f (θn, In+1) = sin(θn) and h(θn, In+1) = 0: Chirikov’s standard map [2,3], g(In+1) = In+1, also known as
Taylor–Chirikov’s map; the bouncer model [4], g(In+1) = ξ In+1; the logistic twist map [5], g(In+1) = In+1 + ξ I2n+1; the
Fermi–Ulam accelerator model [6,7], g(In+1) = 2/In+1; a generalized Fermi–Ulam accelerator (FU) model [8–11],

g(In+1) =
1

Iγn+1
with 0 < γ ≤ 1; (3)

and the hybrid Fermi–Ulam bouncer model [12], g(In+1) = 4ξ 2
[In+1 − (I2n+1 − ξ−2)1/2] if In+1 > ξ−1 and g(In+1) = 4ξ 2In+1

if In+1 ≤ ξ−1. Even though the functional form of g(I) for the mappings above vary significantly from one map to another,
all share a common dynamical feature: the generic transition to chaos1 driven by the parameter K . In fact, the maps above
develop two dynamical regimes separated by the critical parameter Kc . When K < Kc , the phase space is composed of
stochastic motion bounded by invariant tori, known as KAM (Kolmogorov–Arnold–Moser) scenario [1]. At K = Kc , the last
KAM curve is destroyed and the transition to global stochasticity takes place. Then, for K > Kc , I becomes unbounded and
increases diffusively.

It is relevant to stress that the generic transition to chaos shortly described above mainly relies on the choice of
f (θn, In+1) made for the maps listed above; i.e. f (θn, In+1) = sin(θn). As a mater of fact, when choosing f (θn, In+1) to be
the discontinuous function

f (θn, In+1) ≡ f (θn) = sin(θn)sgn[cos(θn)], (4)

map MK (with h(θn, In+1) = 0 and g(In+1) = In+1) also has two different dynamical regimes delimited by the critical value
Kc = 1 [15], however for K < Kc , MK does not show stability islands. Actually, due to the discontinuities of f (θ), KAM
theorem is not satisfied and map MK does not develop the KAM scenario. Moreover, for any K ≠ 0 the dynamics of this
discontinuous map is diffusive and a single trajectory can explore the entire phase space [15]. Nevertheless, when K < Kc
the dynamics is far from being stochastic due to the sticking of trajectories along cantori (fragments of KAM invariant tori).
Examples of physical systems described by discontinuous maps are 2D billiard models like the stadium billiard [16,17] and
polygonal billiards [18,19].

Even though some scaling properties of discontinuous maps have been recently studied [20,21] there is still a huge gap
in the understanding of such maps, as compared to maps developing the KAM scenario. Thus, in order to contribute to fill
this gap, in this paper we study some dynamical properties of the following discontinuous map2:

Mγ :


In+1 =| In − K sin(θn)sgn[cos(θn)] |,

θn+1 =


θn +

1
Iγn+1


mod (2π) with 0 < γ ≤ 1.

(5)

Notice thatmapMγ is in fact the discontinuous-map version of the FU model [8–11] characterized by the function g(I) given
in Eq. (3). We consider here only the case K < 1. In addition, note that due to parameter γ in (5), mapMγ represents a family
of discontinuous maps.3

Then, in the following section we will explore and characterize some dynamical properties of map Mγ when K < 1. In
particular we will focus on the behavior of the average square action


I2


and the average standard deviation of I , that we

name here ω, as a function of the nth iteration of the map as well as the parameters K and γ .

1 The description of the generic transition to chaos, where Chirikov’s standard map is used as a paradigm, can be found in well known textbooks [1,13]
as well as in recent research papers, see e.g. Ref. [14].
2 The absolute value in the first equation of (5) is necessary to avoid the fractional powers of negative numbers in the equation for the phase θ .
3 In fact, the continuous version of map Mγ (i.e. the FU model) represents physically relevant systems for specific values of γ : For γ = 1, both, the

Fermi–Ulam accelerator model [6,7] and the ripple billiard model [22,23] are recovered. For γ = 1/2 some dynamical properties of a time-dependent
potential well [24] are retrieved.
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