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h i g h l i g h t s

• A large deviation theorem for fat-tailed distributions is presented.
• q-deformed exponential distributions are studied
• The formalism is developed by analogy with the non-deformed case.
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a b s t r a c t

We study large deviation properties of probability distributions with either a compact
support or a fat tail by comparing them with q-deformed exponential distributions. Our
main result is a large deviation property for probability distributions with a fat tail.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Law of Large Numbers (LLN) states that the arithmetic mean of i.i.d. variables X1, X2, . . . , Xn converges to the first
moment EXk of the probability distribution. The Large Deviation Principle (LDP) is the property that the probability that the
arithmetic mean has a deviating value is exponentially small in the number of variables n. It is an important assumption for
the theorem of Varadhan [1], which deals with the asymptotic evaluation of certain integrals. See also Refs. [2–7].

Varadhan’s theorem is a generalization of Laplace’s method of evaluating integrals. As such it is highly relevant for the
axiomatic formulation of statistical mechanics. The standard reference in this direction is the book of Ellis [2]. Amore recent
review is found in Ref. [7]. The breakdown of Varadhan’s theorem is related with the occurrence of phase transitions in
models of statistical physics. It is due to the appearance of strong correlations between the variables Xk. Another reason
of failure of Varadhan’s theorem can be that the LDP is not satisfied. This is the case for instance when the probability
distribution of the variables Xk has a fat tail. It is the latter situation which is considered in the present work.

Mathematicians have studied large deviations in the context of probability distributions with a fat tail starting with
the works of Heyde [8,9] and Nagaev [10,11]. See also Refs. [12–19]. The present work starts from the question whether
a systematic use of so-called q-deformed exponential functions can make a contribution to this area of research. The
q-deformed exponential functions, used in the present work, have been introduced [20] in the context of non-extensive
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statistical physics [21]. See also Refs. [22,23]. Our approach differs from that of Ref. [24] and of Ref. [25] who consider strong
correlations in the context of nonextensive statistical mechanics.

The strategy of the paper is to mimic the standard approach, replacing where meaningful the exponential function by
a deformed function. We therefore start in the next section by reviewing some standard inequalities. Section 3 gives the
definition of q-deformed exponential and logarithmic functions. Section 4 dealswith an application of theMarkov inequality
in the case of distributions with a compact support. The treatment of distributions with a fat tail is more difficult. Before
discussing them in Section 6 we first study the q-exponential distributions in Section 5. Section 7 contains a summary and
an evaluation of what has been obtained.

2. The standard inequality

The Markov inequality

Prob (X ≥ x) ≤
EX
x

, x > 0, (1)

valid for any random variable X assuming non-negative values, implies that for any random variable X which assumes real
values one has

Prob (X ≥ x) ≤ A(a)e−ax, a ≥ 0. (2)

This expression involves the moment generating function

A(a) = EeaX . (3)

Its existence is called Cramér’s condition. For a sequence X1, X2, . . . , Xn of i.i.d. variables there follows

Prob


1
n

n
k=1

Xk ≥ x


≤ An(a)e−nax. (4)

Introduce a rate function I(x) defined by

I(x) = sup
θ≥0

{θx − ln A(θ)} ≤ +∞. (5)

Note that we change notations from a to θ for compatibility with expressions later on. The function I(x) is convex non-
decreasing, with I(0) = 0 and limx→+∞ I(x) = +∞ (we assume that A(a) is finite for some a > 0).

One obtains

Prob


1
n

n
k=1

Xk ≥ x


≤ e−nI(x). (6)

When I(x) is strictly positive then an outcome larger than x is a large deviation and its probability decays exponentially fast
in n.

3. Deformed logarithmic and exponential functions

Fix q satisfying 0 < q < 2, q ≠ 1. The q-deformed logarithm is defined by [20,23]

lnq(u) =
1

1 − q


u1−q

− 1

, u > 0. (7)

In the limit q = 1 it reduces to the natural logarithm ln u. The inverse function is the q-deformed exponential. It is defined
on the whole of the real axis by

expq(u) = [1 + (1 − q)u]1/(1−q)
+ ≤ +∞. (8)

Here, [u]+ denotes the positive part of u. Note that expq(lnq(u)) = u holds for all u > 0. However, lnq(expq(u)) may differ
from uwhen expq(u) diverges or vanishes.

For further use we mention that

expq(u) exp2−q(−u) =


[1 + (1 − q)u]+
[1 + (1 − q)u]+

1/(1−q)

= 1, (9)

whenever 1 + (1 − q)u > 0.
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