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h i g h l i g h t s

• A new asymmetric optimal-velocity car-following model is proposed.
• The asymmetry is represented by the exponential function with an asymmetrical factor.
• The deceleration is stronger than acceleration with the same velocity difference.
• Unrealistically acceleration disappears when the velocity difference becomes large.
• The strength of interaction between clusters is increasing with the asymmetry factor.
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a b s t r a c t

Taking the asymmetric characteristic of the velocity differences of vehicles into account,we
present an asymmetric optimal velocity model for a car-following theory. The asymmetry
between the acceleration and the deceleration is represented by the exponential function
with an asymmetrical factor, which agrees with the published experiment. This model
avoids the disadvantage of the unrealistically high acceleration appearing in previous
models when the velocity difference becomes large. This model is simple and only has two
independent parameters. The linear stability condition is derived and the phase transition
of the traffic flow appears beyond the critical density. The strength of interaction between
clusters is shown to increase with the asymmetry factor in our model.

© 2015 Published by Elsevier B.V.

1. Introduction

During last several decades, traffic problemshave beenmodeledmathematically andphysically in various contexts.Many
investigations have been done with different points of view to consider the various aspects of traffic phenomena.

One interesting phenomena of traffic flow is the propagation ofwidemoving jams [1]. In all empirical observations of real
traffic flow on highways wide moving jams emerge in synchronized flow (S → J transition), rather than in free traffic flow
[2,3]. This result of empirical observations of real traffic has been explained in three-phase theory by instability of synchro-
nized flow [2,3]. This instability of synchronized flow can also explain the formation of wide moving jams in traffic exper-
iments conducted in a road circuit [4,5]. Indeed, as shown in Ref. [6], the homogeneous traffic flow in the experiments [4,5]
is related to synchronized flow, rather than to free traffic flow. This congestion phenomena is regarded as the instability and
the phase transition of a dynamical system, and has been modeled using various approaches, see for example Refs. [7–10].
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The optimal velocity (OV) model by Bando et al. [11] cannot describe synchronized flow. Nevertheless, in this paper to
simulate some features ofmoving jamemergence in traffic experiments conducted in a road circuit [4,5], with can use theOV
model. This methodology of a numerical study of moving jam emergence can be explained by the following fact mentioned
in a recent review [12]: Although a diverse variety of complex spatiotemporal phenomena in synchronized flow have been
found in the three phase theory [2,3], one of the most important of them – moving jam emergence in synchronized flow
(S → J transition) – is explained by the over-deceleration effect (driver’s over-reaction) due to a driver’s reaction time,
i.e., by the same traffic flow instability discovered in the GM model. This explains many similar results of the three-phase
theory and the GMmodel class in the description of the features of moving jam propagation in congested traffic.

For the OV model, the velocity vn of the nth car takes the following form:
dvn

dt
= κ[V (hn) − vn], (1)

where hn = xn+1 − xn is the headway, xn is the position of nth car, κ is the coefficient of sensitivity and V (h) is the distance-
dependent optimal velocity that the vehicles adapt to. As a result of the distinctive feature in representing real traffic flow
characteristics such as the evolution of the traffic congestion, there exists a strong push to study and develop this model in
a realistic way.

Realizing that the OV model may result in impractical high acceleration and unrealistic deceleration from the experi-
mental study, Helbing and Tilch [13] added a new term representing the impact of the negative difference in velocity to the
OV model and developed a generalized force (GF) model as:

dvn

dt
= κ[V (hn) − vn] + λΘ(−1vn)1vn, (2)

where Θ is the Heaviside function and 1vn is the relative velocity, i.e., 1vn = vn+1 − vn. A new optimal velocity function
was also proposed with respect to the empirical data as:

V (h) = V1 + V2 tanh[C1(h − lc) − C2], (3)
where lc is the length of the vehicles taken as 5m in simulations. The resulting optimal parameter values are V1 = 6.75m/s,
V2 = 7.91 m/s, C1 = 0.13 m−1, and C2 = 1.57. Generally, this optimal velocity function is monotonically increasing with
headway h, and bounded from above and below by the maximum and minimum velocity of the car.

Noting that the GF model only considers the case where the velocity of the following vehicle is larger than that of the
leading vehicle, Jiang et al. [14] proposed a full velocity difference (FVD)model that takes both positive and negative velocity
difference into account:

dvn

dt
= κ[V (hn) − vn] + λ1vn. (4)

A major deficiency of this model lies in the fact that it models the velocity differences of vehicles symmetrically, which is
unrealistic. Gong et al. [15] modified this expression to consider the effects of asymmetric acceleration and deceleration in
their asymmetrical full velocity difference (AFVD) model:

dvn

dt
= κ[V (hn) − vn] + λ1Θ(−1vn)1vn + λ2Θ(1vn)1vn. (5)

To represent different acceleration and deceleration, Eq. (5) applies two sensitivity coefficients to model the velocity
difference. It is assumed that the vehicles’ capability in deceleration is greater than in acceleration, corresponding toλ1 > λ2
in their model.

Taking this asymmetric characteristic into account, Shamoto et al. [16] proposed a car-following model based on the
experiments:

dvn

dt
= a − b

vn

(hn − d)2
exp (−c1vn) − γ vn, (6)

here a, b, c, d, γ are positive parameters. For this model, multiple ‘stop-and-go’ (SAG) waves are hard to merge, because
hn is approximately equal to d in the jam flow and vn/(hn − d)2 becomes infinite. The acceleration of the car cannot be
maintained constantly resulting in few cars in the cluster, and the wide moving jam cannot be formed.

2. Asymmetric optimal-velocity car-following model

As the relative velocity 1vn increases, the acceleration of a car should have a realistic physical limit, even when the
relative velocity becomes infinite (1vn → ∞). In addition, drivers will apply emergency braking to avoid the collisionwhen
relative velocity is negative and becomes smaller. Therefore, the relationship between relative velocity and acceleration
(deceleration) is in general nonlinear in reality as demonstrated by actual experiments [16]. FVD models and AFVD models
are formulated by linearly adding the relative velocity term, in disagreement with the experimental data.

Building on these observations, we have determined an asymmetric optimal velocity (AOV) car-following model as
follows:

dvn

dt
= κ [V (hn) − vn + 1vn exp(−µ1vn)] , (7)
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