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Abstract

Di'usion processes X (t) verifying the stochastic di'erential equation dX (t) = a dt + b dW (t),
X (t0)=X0, b¿ 0, are considered for standard Wiener processes W (t) in 0¡t0 ¡t¡T . Problems
of testing hypotheses about the parameters are analyzed when the stochastic process is partially
observed. A family of test statistics is introduced on the basis of the R$enyi divergence measure
and their asymptotic distributions are obtained. To 6nish, a simulation study is given in order
to compare powers of some of the introduced statistics.
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1. Introduction

Parametric statistical inference on continuous stochastic processes X (t) is often a
di<cult task. Moreover, in many cases it is not possible to record complete information
about realizations. Because of this reason it is worthwhile to have statistical procedures
for partially observed stochastic processes.

Let X (t) be a di'usion process verifying the stochastic di'erential equation dX (t) =
a dt + b dW (t), X (t0) = X0, b¿ 0, where W (t) is a standard Wiener process. Assume
that there exist times 0¡t0 ¡t1 ¡ · · ·¡tn=T , where X (t) is observed and de6ne the

∗ Corresponding author. Tel.: +34-96-665-8709; fax: +34-96-665-8715.
E-mail address: d.morales@umh.es (D. Morales).

0378-3758/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.jspi.2003.08.010

mailto:d.morales@umh.es


92 M.J. Rivas et al. / Journal of Statistical Planning and Inference 127 (2005) 91–102

increments Eti = ti− ti−1; i=1; 2; : : : ; n, not necessarily equal. Under these assumptions,
it holds that

EX (ti) , X (ti) − X (ti−1) = aEti + i; (1.1)

where i = bEW (ti) ∼ N(0; b2Eti), i = 1; 2; : : : ; n, are independent. Here and in the
sequel ∼ is used to denote “is distributed as”. Dividing by (Eti)1=2 in both sides of
equality (1.1), one gets

Y (ti) ,
EX (ti)
(Eti)1=2 = a(Eti)1=2 +

i
(Eti)1=2 , ah(ti) + �i; i = 1; 2; : : : ; n;

where �i ∼ N(0; b2) are independent. The result of this algebra is an homoskedastic
linear model Y = ah + �, where Y = (Y (t1); : : : ; Y (tn))t, h = (h(t1); : : : ; h(tn))t and � =
(�1; : : : ; �n)t. Under these assumptions the joint probability density function of Y at
Y (t1) = y1; : : : ; Y (tn) = yn is

fa;b2 (y1; : : : ; yn) = (2�b2)−n=2 exp

{
− 1

2b2

n∑
i=1

(yi − ah(ti))2

}
(1.2)

and the maximum likelihood estimators (MLE) of parameters are

ân =
X (tn) − X (t0)

tn − t0
and b̂2

n =
1
n

n∑
i=1

(Y (ti) − ânh(ti))2: (1.3)

It can be easily checked that

ân ∼ N
(
a;

b2

tn − t0

)
and

nb̂2
n

b2 ∼ �2
n−1; (1.4)

are stochastically independent. Furthermore, observe that E[b̂2
n] = [(n− 1)=n]b2, so that

b̂2
n is an asymptotically unbiased estimator of b2. However, S2

R =[n=(n−1)]b̂2
n is unbiased

for b2 and

(n− 1)S2
R

b2 ∼ �2
n−1:

By substituting (1.3) in (1.2), the estimated density

fân;b̂2
n
(y1; : : : ; yn) = (2�b̂2

n)
−n=2 exp

{
− 1

2b̂2
n

n∑
i=1

(yi − ânh(ti))2

}

and the likelihood ratio

R=
fa0 ;b2

0
(y1; : : : ; yn)

fân;b̂2
n
(y1; : : : ; yn)

=
(2�b2

0)−n=2 exp{−(1=2b2
0)
∑n

i=1 (yi − a0h(ti))2}
(2�b̂2

n)−n=2 exp{−(1=2b̂2
n)
∑n

i=1 (yi − ânh(ti))2}

=

(
b̂2
n

b2
0

)n=2
exp

{
1
2

[
n− 1

b2
0

n∑
i=1

(yi − a0h(ti))2

]}
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