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Abstract

Diffusion processes X (¢) verifying the stochastic differential equation dX(¢) =ads+ bdW(t),
X(t))=Xo, b > 0, are considered for standard Wiener processes W (¢) in 0 < tp < ¢t < T. Problems
of testing hypotheses about the parameters are analyzed when the stochastic process is partially
observed. A family of test statistics is introduced on the basis of the Rényi divergence measure
and their asymptotic distributions are obtained. To finish, a simulation study is given in order
to compare powers of some of the introduced statistics.
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1. Introduction

Parametric statistical inference on continuous stochastic processes X(¢) is often a
difficult task. Moreover, in many cases it is not possible to record complete information
about realizations. Because of this reason it is worthwhile to have statistical procedures
for partially observed stochastic processes.

Let X (¢) be a diffusion process verifying the stochastic differential equation dX(z)=
adt+bdW(t), X(ty) =Xy, b > 0, where W(t) is a standard Wiener process. Assume
that there exist times 0 < fyp < t; < --- < t,=T, where X(¢) is observed and define the
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increments At;=t;—t;_1,i=1,2,...,n, not necessarily equal. Under these assumptions,
it holds that

AX(Z‘,‘) éX(l‘f)—X(tj_l):(lAli—Fi’]j, (11)

where 1; = bAW(t;) ~ N(0,h*At;), i = 1,2,...,n, are independent. Here and in the
sequel ~ is used to denote “is distributed as”. Dividing by (A#)"? in both sides of
equality (1.1), one gets

AX(4)
(A2

a A2+ A iy e, i=1,2,.. 0,

Y (A1)

where & ~ N(0,b%) are independent. The result of this algebra is an homoskedastic
linear model Y = ah + ¢, where Y = (Y (t1),..., Y(t.))', h = (h(t),...,h(t,))" and ¢ =
(e1,...,&)". Under these assumptions the joint probability density function of Y at
Y(t]):yl,...,Y([n):yn is

1 n
_ 2\—n/2 2
Sar (150 ) = @) ™" exp{2b2 §i:1 (i — ah(t)) } (1.2)
and the maximum likelihood estimators (MLE) of parameters are
. X(tn) —X(10) R . 2
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==t and Bi= o Y (Y(8) — dh(n) (13)
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It can be easily checked that

. b’ néﬁ )
an~N<a, tn—to) and et (1.4)
are stochastically independent. Furthermore, observe that £ [l;ﬁ] =[(n— 1)/n]b2, so that
b2 is an asymptotically unbiased estimator of *>. However, Sa=[n/(n—1)]b? is unbiased
for »? and

(n—1)S2
TR ~ X,2171-
By substituting (1.3) in (1.2), the estimated density
l n
L1 vn) = @rbp) ™" exp {_2132 > i d”h(ti))z}
noi=1

and the likelihood ratio

_ fao,bﬁ(ylr--syn) _ (27Ib(2))”’/2 exp{f(l/Zb%) Z:’:l (yi — aoh(t:))*}
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