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Abstract

We use what we call the bent-cable model to describe potential change-point phenomena. The
class of bent cables includes the commonly used broken stick (a bent cable without a bend
segment). Theory for least-squares (LS) estimation is developed for the basic bent cable, whose
incoming and outgoing linear phases have slopes 0 and 1, respectively, and are joined smoothly
by a quadratic bend. Conditions on the design are given to ensure regularity of the estimation
problem, despite non-di4erentiability of the model’s 6rst partial derivatives (with respect to the
covariate and model parameters). Under such conditions, we show that the LS estimators (i)
are consistent, regardless of a zero or positive true bend width; and (ii) asymptotically follow a
bivariate normal distribution, if the underlying cable has all three segments. In the latter case,
we show that the deviance statistic has an asymptotic chi-squared distribution with two degrees
of freedom.
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1. Introduction

Given known design points x1; : : : ; xn, we consider random responses Y1; : : : ; Yn gen-
erated by the regression model

Yi = q(xi; �0; 	0) + 
i; i = 1; : : : ; n; (1)

where

q(x; �; 	) =
(x − �+ 	)2

4	
1{|x − �|6 	} + (x − �)1{x − �¿	} (2)

is referred to as the basic bent cable (Fig. 1), and 
i’s are i.i.d. random errors with
mean 0 and known, constant standard deviation �. 1 We write �0 = (�0; 	0).

Least-squares (LS) estimation of �0 ∈=(−∞; M ]× [0;∞) on the open regression
domain X = R is considered. Here, M is some 6nite positive upper bound (large)
for the candidate �-values. Zero is the natural lower bound for candidate 	-values.
Any basic bent cable q(x; �) for �∈ is a candidate model. In this article, we prove,
given a set of conditions on the location of the design points x1; : : : ; xn (Section 3),
that the least-squares estimators (LSEs) for �0 and 	0 are consistent when 	0¿ 0,
and asymptotically follow a bivariate normal distribution when 	0 ¿ 0. Asymptotic
distributional properties for the case of 	0 = 0 appear in Chiu et al. (2002a). A bent
cable with free slope parameters is required in practice. The full bent-cable model can
be written as f(x; �0; �1; �2; �; 	) = �0 + �1x + �2q(x; �; 	). This article is intended to
provide a framework for the complex estimation theory associated with the full model.
Seber and Wild (1989, Chapter 9) have suggested employing the class of bent-cable

models—which includes the piecewise-linear “broken-stick” model when 	 = 0—in
situations where both smooth and sharp transitions are plausible. However, model-
ing change phenomena by the broken stick remains common (Barrowman and Myers,
2000; Naylor and Su, 1998; Neuman et al., 2001). Numerical instability due to the
non-di4erentiability of this model prompted Tishler and Zang (1981) to develop (2).
Their introduction of a “phoney” bend of 6xed, non-trivial width 	 to replace the kink
at � was a computational tactic. Upon numerical convergence, 	 would be ignored.
However, when no law of nature or auxiliary knowledge is available to support

an abruptness notion, a broken-stick 6t would encourage the investigator to look for
sources of change associated with the sole value of �̂. In contrast, the bent cable incor-
porates 	 as part of the parametric model. It generalizes the broken stick by removing
the a priori assumption of a sharp threshold, allowing for a possibly gradual transition.
A bent-cable 6t would point to one or more sources of change whose inOuence took
hold gradually over a certain covariate range. Thus, it helps to avoid data misinterpre-
tation due to possible over-simplication of the nature of change. We call it the “bent
cable” due to the smooth bend as opposed to a sharp break in a snapped stick. The per-
formance of bent-cable regression for assessing the abruptness of change is discussed
in Chiu et al. (2002b).

1 In practice, estimation of � may be required. Chiu (2002) shows that the results of this article extend
to LS estimation assuming unknown �, and that the LSE of � is consistent.
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