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a b s t r a c t

We study the convergence towards the equilibrium for a dissipative and stochastic time-
dependent oval billiard. The dynamics of the system is described by using a generic four
dimensional nonlinear map for the variables: the angular position of the particle, the angle
formed by the trajectory of the particle with the tangent line at the position of the collision,
the absolute velocity of the particle, and the instant of the hit with the boundary. The
dynamics of the stationary state aswell as the dynamical evolution towards the equilibrium
is made by using an ensemble of non interacting particles. Finally, we make a connection
with the thermodynamic by using the energy equipartition theorem.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Classical billiards are dynamical system in which a particle, or an ensemble of non-interacting particles, moves confined
to and experiences collisions with a boundary [1–9]. Basically, they are settled in three classes, namely (i) integrable,
(ii) ergodic, and (iii) mixed. In case (i), the phase space consists of invariant tori filling the entire phase space. In case (ii),
the time evolution of a single initial condition is enough to fills up the entire phase space. Finally, in case (iii), one can
observe invariant tori, chaotic seas generally surrounding Kolmogorov–Arnold–Moser (KAM) coexisting. If a time dependent
perturbation is introduced on the boundary [10], the system exchanges energy with the moving particles upon collisions.
Such type of systems have attracted a lot of attention lately because they can be used to study the phenomenon of unlimited
energy growth also known as Fermi acceleration [11]. However, how to identify in which type of system the phenomenon of
Fermi acceleration will be observed? To answer this question, Loskutov, Ryabov and Akinshin (LRA) proposed a conjecture
where they state that a chaotic component in the phase space for the time-independent dynamics is a sufficient condition
to observe Fermi acceleration once a time dependent perturbation on the boundary is introduced. This conjecture became
known as LRA conjecture [12,13] and over the years it has been verified in several systems such as the time dependent
Lorentz gas [14,15], oval [16] and stadium [17,18] billiard amongmany other systems [19,20]. Nevertheless, later on results
have shown that the existence of a chaotic component is a sufficient, but not a necessary condition for Fermi acceleration
since the unlimited energy growthwas also observed in a time dependent elliptical billiard. As it is known, the elliptical with
static boundary is an integrable system whose integrability comes from the conservation of the angular momentum with
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Fig. 1. Illustration of 5 snapshots of a time-dependent oval billiard. The corresponding angles that describe the dynamics of the model are also shown for
two collisions.

respect to the two foci [21]. However, when a time dependent perturbation is introduced into the system, the separatrix is
replaced by a chaotic layer and trajectories that were confined inside the separatrix (librators) can now explore the region
outside the separatrix (rotators) and vice-versa. This change of behavior, namely, librator orbits ‘‘jumping’’ to rotator and
vice-versa turned out to be the mechanismwhich produces the unlimited energy growth [22–24]. More recently, it became
clear that such a phenomenon is not robust [25] since a tiny amount of dissipation, either upon collision [26,27] or during
the flight [28], is enough to suppress Fermi acceleration.

The motion of the time dependent boundaries can be related to a more physical situation. Indeed due to the thermal
fluctuations, the position of each atom on the boundary is allowed to move locally. Such oscillation of the atoms, and
hence of the boundary, can be extended to the context of billiard which allows us to connect the observables obtained
from the velocity of the particle – such as the kinetic energy – to the thermodynamics, more precisely, the temperature and
entropy [29]. So far, such a connection has beenmade for the Lorentz gas to describe themotion of electrons between heavy
ions as in a lattice of metal [30]. Therefore, further investigation is needed to understand how the dynamics of the systems
can be connected to more real situations.

In this paper we study some dynamical properties for an ensemble of noninteracting particles in a time dependent
billiard. Our main goal is to understand and describe the dynamics of the mean squared velocity as a function of the
time considering different values of the control parameters, namely, the dissipation upon collision, the parameter that
controls the shape of the boundary and the amplitude of the time-dependent perturbation of particles moving inside a
closed domain. As an illustration, we consider a stochastic version of the time-dependent oval billiard. The introduction
of a random perturbation on the border resembles the rough oscillations – producing a random exchange of energy upon
collision – at least in themicroscopic domain. The results that are obtained numerically are confirmed by using an analytical
approach.

This paper is organized as follows. In Section 2 we present the model. In Section 3 we present our numerical findings.
In Section 4 we introduce an analytical approach to obtain the behavior of the average velocity as a function of the number
of collisions with the moving boundary. Finally, in Section 5, we make a connection with the thermodynamics by using the
expression obtained analytically for the particle’s average velocity. Conclusions are drawn in Section 6.

2. The model and the map

In this section we present all the details needed to study the dynamics of an ensemble of noninteracting particles
experiencing collisions with a moving boundary. As it is so usual in the literature, we describe the dynamics of the model
in terms of a four dimensional nonlinear mapping T̃ that gives the angular position of the particle θn; the angle that
the trajectory of the particle forms with the tangent line at the position of the collision αn; the absolute velocity of the
particle |V⃗n| and the instant of the hit with the boundary tn, i.e., (θn+1, αn+1, |V⃗n+1|, tn+1) = T̃ (θn, αn, |V⃗n|, tn). The index
n denotes the nth collision with the moving boundary. Assuming that the shape of the boundary in polar coordinates
is Rb(θ, ϵ, p, t) = 1 + εf (t) cos(pθ) where the subindex b denotes boundary, f (t) is a function to be chosen, ε is the
perturbation of the circular billiard and p is an integer number warranting a closed boundary, otherwise particles would
escape.We consider f (t) = 1+η cos(ωt)where η is the amplitude of the time dependent perturbation andω is the angular
frequency, which from now is fixed as ω = 1. Fig. 1 shows a typical illustration of a billiard and the angles used to describe
the dynamics of the model.
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