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h i g h l i g h t s

• Least squares method is not appropriate for estimating β of Barabási–Albert graphs.
• A modified version of Clauset et al. (2009) is more preferable for estimation.
• Simulated graphs show that exponent is not the theoretical β = 2 for small graphs.
• Value of β is also dependent on number of edges added,m, for small graphs.
• Smaller value of m results in larger value of β for all graph sizes.
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a b s t r a c t

The degree distribution of a simulated Barabási–Albert graph under linear preferential
attachment is investigated. Specifically, the parameters of the power law distribution are
estimated and compared against the theoretical values derived using mean field theory.
Least squares method and MLE-nonparametric method were utilized to estimate the
distribution parameters on 1000 simulated Barabási–Albert graphs for edge parameter
m ∈ {2, 4, 6} and size n ∈ {2k

: k = 5, 6, . . . , 14, 15}. Goodness of fit metrics were
computed on a second set of simulated graphs for the median of the estimated parameters
and other hypothetical values for the distribution parameters. The results suggest that the
distribution of the parameters from simulated graphs are significantly different from the
theoretical distribution and is also dependent onm. Further results confirm the finding that
the parameter of the power law distribution, β , increases asm increases.

Published by Elsevier B.V.

1. Introduction

Many fields of researchproduce relational data that can be represented in the formof graphs [1,2]. Representing relational
data, or networks, in graph form provides a forum with which to study the relationships within the dataset, in particular,
graphical properties that may be used to characterize the network. One such property is referred to as the scale-free
property [3,4], and networks that are scale-free have a degree distribution which follows the power law. The scale-free
property governs many physical, biological, and man-made phenomena [5–8].

One of themore well known graphmodels that exhibits the scale-free property was proposed by Barabási and Albert [5].
This model is governed by the concept of preferential attachment where new entities are more likely to form connections
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with those that are already well connected in the network. Although there have been more complicated models for random
graphs established in the literature [9], the properties of the Barabási–Albert model make it highly desirable.

It has been established that the degree distribution of theBarabási–Albertmodel follows a specific power lawdistribution,
namely, the Pareto distribution, with an exponent of β = 2 [5]. The assumption that β = 2was derived based on asymptotic
theory and thus holds true for very large networks, although how well small networks are represented by β = 2 is
unknown. Further, the degree distribution does not have a continuous support, suggesting that, for small networks, a discrete
distribution may be more appropriate. Both the Zipf’s law [10] and the Yule–Simon distribution [11,12] are discretized
versions of the power law. Newman [6] stated that the Yule–Simon distribution is easier to work with than the Zipf’s law
since sums of the probability mass function (PMF) of the former can frequently be performed in closed form whereas sums
of the PMF of the latter can only be written in terms of special functions.

Despite these findings, little has beendone to extend the use of the degree distribution of the Barabási–Albert graphunder
the linear preferential attachment model although this model has been in use for over a decade [9]. One exception is shown
by thework ofWang et al. [13] where they studied the degree distribution of the line graph of the Barabási–Albert graph and
showed that it also follows the power law. However, a simulation in their study showed that the empirical distribution of
the line graph deviates from the expected theoretical distribution. It is widely accepted in the literature that the power law
exponent of the Barabási–Albert graph is β = 2 based on its derivation, although questions have been raised as to whether
or not this is true [14,6,15]. Newman [6] claimed that β = 1.2, and even by their own admission, Albert and Barabási [14]
showed that β = 1.9 provided the best fit on their simulated Barabási–Albert model for very large n.

One of the factors affecting the value of β is the choice of method for parameter estimation. Dating back to the 19th
century, the classical method of parameter estimation for the power law has been conducted by fitting a least square line
on the doubly logarithmic histogram [16]. A doubly logarithmic histogram is a technique of plotting a histogram using a
skewed logarithmic scale on the vertical and horizontal axes. The exponent of the power law can then be estimated using
the absolute slope of the line from the doubly logarithmic histogram. However, some have argued that there are issues
with this technique. Newman [6] argued that the survivor function (SF) should instead be used because the behavior of
the histogram is very dependent on the chosen binning, whereas Clauset et al. [7] argued for the use of a combination
of maximum likelihood and nonparametric techniques. Clausetet al. [7] proposed that their method is more robust than
least square fitting due to its statistical framework. The purpose of properly estimating the degree distribution for the
Barabási–Albert network is so that we can represent complex phenomena in a well described, manageable, and well known
visual graphical representation. This is especially important for small graphs which are well suited for visual analysis. This
work seeks to determine themost appropriate parameter value for representing a Barabási–Albert network of various sizes.

We begin by describing the Barabási–Albert model and the representation of its degree distribution via the power law.
Then, wewill estimate the true distribution of the nodal degree for the Barabási–Albert graph for when the size of the graph,
n, and the number of links added, m, are relatively small and compare these to the theoretical value of β = 2 provided by
Barabási and Albert [5]. Considering the disparity in opinions of the properway to estimate the parameters of the power law,
we use both approaches of fitting a least squares on the SF and the MLE-nonparametric approach as proposed by Clauset
et al. [7]. Comparisons are then made by looking at the goodness of fit of both methods by computing the −loglikelihood
and mean square error (MSE) of their respective estimated distribution. We conclude with a discussion on the implication
of our results on estimating the parameters of the Pareto distribution for the degree distribution.

2. Background

2.1. Barabási–Albert graph model

The Barabási–Albert model is based on two mechanisms that govern the scale-free property of real world networks:
(1) networks expand continuously by the addition of new nodes, and (2) new nodes attach preferentially to other nodes
that are already well connected. The model operates by first starting with an initial number of nodes, m ≤ m0, with no
edges. This is followed by an iterative process of adding a single node with m edges. Each edge is connected to an existing
node iwith degree ki based on the linear preferential attachment probability, π(ki), where

π(ki) =
ki
j
kj

. (1)

Here, π(ki) is the probability that node i will be attached to the new node.
Thus, the nodal degree of the Barabási–Albert scale-free graph can be derived by using themean field theory as described

in Ref. [5] and reproduced, in part, here. Letm0 be the number of nodes initially included in the graph andm be the number
of edges added at each iteration over t iterations, wherem ≤ m0. The size of the graph is then n = m0 + t , the total number
of edges E = mt , and consequently the total degree of the graph


ki = 2mt . Given the preferential attachment in Eq. (1),

the rate of change for ki over t iterations could be written as

∂ki
∂t

= mπ (ki) =
ki
2t

. (2)



Download English Version:

https://daneshyari.com/en/article/974204

Download Persian Version:

https://daneshyari.com/article/974204

Daneshyari.com

https://daneshyari.com/en/article/974204
https://daneshyari.com/article/974204
https://daneshyari.com

