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h i g h l i g h t s

• Extension of the Time Operator theory with network evolution.
• Innovations and Age of Markov Networks.
• A new distribution emerging from the innovations of the Barabási–Albert network evolution model.
• Age of Markov and Barabási–Albert Networks expressed in terms of Tsallis Entropy.
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a b s t r a c t

We extend the Time Operator and Age to Network Evolutionmodels. Internal Age formulas
and the distribution of innovations are computed for Erdős–Rényi Random Networks, for
Markov Networks and Barabási–Albert preferential Attachment Networks. The innovation
probabilities are found to be proportional to the quadratic entropy (which coincides with
the Tsallis entropy for entropic index q = 2) in all Markov networks, as well as in the linear
growth mechanism. The distribution of innovations in the Barabási–Albert model is a new
probability distribution of the logarithmic type.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The idea to represent time as an operator goes back to Pauli [1] in the context of QuantumMechanics where the concept
was not correctly defined due to the semi-boundedness of the spectrum of the Hamiltonian Operator. This problem was
resolved in the frame of the Liouville–Von Neumann formulation of Quantum Statistical Mechanics [2–7]. Time Operators
were constructed for chaotic Dynamical Systems in the Liouville–Koopman statistical formulation [8,9,3,10–15] and for
Stochastic processes [16,17], namely Bernoulli processes [18] and Markov chains [19].

The goal of this work is to extend the Time Operator and Age, to three representative classes of evolving networks.
More specifically, the Erdős–Rényi Networks, the Markov Networks and the Barabási–Albert Networks. After generalizing
and formulating the Time Operator to evolving networks in Section 2, we define the internal Age for any random adjacency
matrix in Section 3.We compute the Age formulas for Erdős–Rényi graphs in Section 4. In Section 5we study the innovations
and Age of three representative Markov networks, namely the Ehrenfest Urn Markov chain, the Moran process and Web
navigation. Finally, in Section 6 the innovation probability and Age formula are presented in general for a linear growth
mechanism where one link is attached to one of the previous links and for the preferential attachment Barabási–Albert
model.
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2. The Time Operator associated with network evolution

Consider an evolving network with adjacency matrix a(t) = {aκλ(t)}, κ, λ = 1, 2, . . . ,N(t), where N = N(t) is the
number of nodes at (clock) time t . The network evolution is observed by the realization of the (N(t))2 random variables
aκλ(t), κ, λ = 1, 2, . . . ,N(t) of the adjacency matrix at each time t .

The Adjacency Matrix elements are assumed to be mutually independent random variables considered at any specific
time t:

aκλ(t) : Ω → {0, 1}, κ, λ = 1, 2, . . . ,N, t = 1, 2, . . . . (1)

The probability wκλ(t) to have a link from node κ to node λ at time t:

wκλ(t) = Prob{aκλ(t) = 1} (2)

may be interpreted as the ‘‘success’’ probability of the Bernoulli distributed randomvariables aκλ(t). The evolution law of the
probabilities wκλ(t), t = 1, 2, . . . is specified by the specific model under consideration. The assumption of independence,
is found in several network evolution models, like the Erdős–Rényi random graphs, preferential attachment models,
percolation [20–22]. Independence gives the possibility to extend the Time Operator theory to network evolution models.
The Time Operator associated to network evolution is defined as follows. The sample space Ω is defined by the possible
values of the adjacency matrix elements:

Ω = {ω = {ωκλ = 0, ωκλ = 1}, κ, λ = 1, 2, . . . ,N} = {0, 1}N
2
.

The order N of the adjacency matrix is taken to be larger than the largest order N(t), t = 0, 1, 2, . . . , T that may appear
during the duration T of observations, so that all evolutionary states are included. The duration T of observations may be
any finite number or infinity in case observations proceed in the remote future T → ∞.

The network evolution defines in a natural way a binary partition of the sample space Ω at each stage t as follows:

ξκλ(t) = {Ξ 0
κλ(t), Ξ 1

κλ(t)} (3)

where the two cells are: Ξ i
κλ(t) := {ω ∈ Ω : ακλ(t) = i}, i = 0, 1.

The successive observations of the network up to stage t = 1, 2, . . . through the successive partitions are incorporated
in the σ -algebra generated by the common refinement ∨κ,λ ξκλ(t):

St = S(a11(t), a12(t), . . . , aNN(t)) = S(∨κ,λ ξκ,λ(t)) =

t
τ=1

S(ξκ,λ(τ )). (4)

The notation S(.) stands for ‘‘the σ -algebra generated by’’ (.).
The sequence of increasing σ -algebras St , t = 1, 2, . . . is the natural filtration of the process aκλ(t):

{Ω, ∅} = S0 ⊆ S1 ⊆ S2 ⊆ · · · ⊆ ST = S (5)

where S = ST is the σ -algebra generated by the final observation.
The binary random variables ακλ(t) are square integrable, i.e. they live in the Hilbert space L2(Ω, S, µ) with the

correlation scalar product: (X, Y ) = E[X, Y ]. In order to describe the fluctuations from the equilibrium value, we denote by
H0 the Hilbert space of constant random variables. The projection of any random variable Z ∈ L2(Ω, S, µ) onto H0 is the
expected value E[Z]. Therefore the fluctuations Z − E[Z]1Ω live in the Hilbert space H = L2(Ω, S, µ) ⊖ H0. The filtration
Eq. (5) defines the corresponding resolution of the identity Ht of the fluctuation space H and the associated resolution of
the identity IH by the conditional expectation projections Et according to the formulas:

Ht = L2(Ω, St , µ) ⊖ H0, t = 0, 1, 2, . . . , T (6)
Et = E[.|St ] : H → Ht , t = 0, 1, 2, . . . , T . (7)

The resolution properties are straightforward by construction:
t=1,2,...,T

Ht = ∅ (8)


t=1,2,...,T

Ht = H (9)

Ht1 ⊆ Ht2 , t1 < t2 (10)

E0 = O (11)
ET = IH (12)
Et1 ≤ Et2 , t1 < t2. (13)

The resolution properties (11)–(13) show moreover that the conditional expectations Et , t = 0, 1, . . . , T are also the
spectral projections of a unique self-adjoint operator. This operator has been traditionally called Time Operator.
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