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h i g h l i g h t s

• One-norm GQD is more robust than QD against the decoherence at finite temperature.
• One-norm GQD is superior to QD in detecting the critical point of QPT of the spin chain.
• The phenomena of sudden transition and double sudden transitions are analyzed.
• The methods to control the frozen time of quantum correlations are proposed.
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a b s t r a c t

We study the dynamics of quantum correlations measured by quantum discord (QD) and
one-norm geometric quantum discord (GQD) in a two-qubit system coupled to an XY spin
chain with finite temperature. It is shown that one-norm GQD is more robust than QD
against the decoherence induced by the spin chain with finite temperature, and one-norm
GQD is superior to QD in detecting the critical point of quantum phase transition (QPT) of
the spin chain. Considering the effects of the state parameters, the temperature of the spin
chain and the asymmetric coupling parameter, we analyze the phenomenons of sudden
transition and double sudden transitions occurred in the evolutions of QD and one-norm
GQD. Besides, the influences of the Dzyaloshinsky–Moriya (DM) interaction and the three-
site interaction in the spin chain are also taken into account.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

With the rapid development of quantum information theory, quantum entanglement as a type of quantum correlations
has gained significant study and exploitation of quantum advantage [1]. However, quantum correlations may have more
general and fundamental definition instead of using entanglement, since there exist quantum tasks that display the quantum
advantage without entanglement [2]. It has been found that quantum discord (QD) defined as the difference between
quantum mutual information and classical correlation [3] is supposed to characterize all of nonclassical correlations in a
bipartite state. A nonzero QD but not entanglement may be responsible for the efficiency of a quantum computer [4,5].
Therefore,much attentionhas beenpaid to the study ofQD [6–10]. However, due to the complicated optimization involved, it
is usually complicated to calculate QD analytically. In order to overcome this difficulty, Dakić et al. [11] introduce a geometric
quantum discord (GQD) which is defined as theminimal distance between a given state and all states with zero discord. It is
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proved that GQD is analytically computable for arbitrary bipartite states [12]. But recent study shows that GQD as proposed
in Ref. [11] may increase under local operations on the unmeasured subsystem [13], so it cannot be regarded as a good
measure for quantum correlations. In this context, the one-norm GQD is proposed since it does not suffer from an inherent
problemwhich affects the GQD originally introduced in Ref. [11]. It is reported that the one-norm GQD as ameasurement of
QD has exhibited some interesting phenomenons, such as double sudden transitions in the decoherence problems [14–17].

On the other hand, real quantum systems will unavoidably interact with the surrounding environment and thus lead
to decoherence. In the past few years, decoherence or disentanglement induced by the spin environment with quantum
phase transition (QPT) has been discussed [18–27]. It is found that at the critical point where the environment occurs QPT,
the decoherence is enhanced and the disentanglement process is accelerated by the quantum criticality. Recently, there has
been an increase in the investigations of the dynamic behavior of QD under spin environment [28,29]. The results show
that the QD is more robust than entanglement and exhibits sudden change. In this paper, as an extension of the work [29],
we present a theoretical investigation of quantum correlations dynamics of two-qubit system coupled to an XY spin chain
by one-norm GQD. Comparing with the case of QD, we find the one norm-GQD can reveal more properties about quantum
correlations of the system under finite temperature environment.

2. Hamiltonian evolution

The total Hamiltonian of the composite system we considered in this paper is described by [29]

H = HE + HI , (1)

where
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denotes the Hamiltonian of the environmental spin chain, and

HI = −g(σ z
A + f σ z

B )

N
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is the interaction Hamiltonian between the two-qubit system and the spin chain. Here σ z
A,B and σ

x,y,z
l are the Pauli operators

used to describe the two qubits and the spin chain respectively. N is the number of spins in the chain, and the periodic
boundary conditions σ x,y,z

N+1 = σ
x,y,z
1 are satisfied. γ measures the anisotropy in the in-plane interaction, and λ represents

the strength of the transverse field applied to environment. g is coupling strength between the two-qubit system and
the spin chain. The parameter f ∈ [0, 1] denotes the two qubits couple asymmetrically to the spin chain. Notice that
[g(σ z

A + f σ z
B ), σ

x,y,z
l ] = 0, so the total Hamiltonian can be rewritten as
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HλµE is given from HE by replacing λ with λµ. By successively using the Jordan–Wigner transformation σ z
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N ), the Hamiltonian HλµE can be diagonalized exactly as [22]
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with the energy spectrum is
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Now we can calculate the dynamic evolution of the two-qubit system. Let us assume that the two qubits and the envi-
ronmental spin chain are initially in the product density matrix form

ρ(0) = ρAB(0)⊗ ρE(0), (7)
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