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h i g h l i g h t s

• A new derivation of the Landau equation for inhomogeneous systems is presented.
• It relies on a functional integral rewriting of the BBGKY hierarchy.
• It appears as a promising alternative to previous methods.
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a b s t r a c t

Wepresent a derivation of the kinetic equation describing the secular evolution of spatially
inhomogeneous systems with long-range interactions, the so-called inhomogeneous
Landau equation, by relying on a functional integral formalism. We start from the BBGKY
hierarchy derived from the Liouville equation. At the order 1/N , where N is the number of
particles, the evolution of the system is characterised by its 1-body distribution function
and its 2-body correlation function. Introducing associated auxiliary fields, the evolution
of these quantities may be rewritten as a traditional functional integral. By functionally
integrating over the 2-body autocorrelation, one obtains a new constraint connecting
the 1-body DF and the auxiliary fields. When inverted, this constraint allows us to
obtain the closed non-linear kinetic equation satisfied by the 1-body distribution function.
This derivation provides an alternative to previous methods, either based on the direct
resolution of the truncated BBGKY hierarchy or on the Klimontovich equation. It may turn
out to be fruitful to derive more accurate kinetic equations, e.g., accounting for collective
effects, or higher order correlation terms.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Recently, the dynamics and thermodynamics of systems with long-range interactions have been a subject of active
research [1,2]. The equilibrium properties of these systems, and their specificities such as negative specific heats, various
kinds of phase transitions and ensemble inequivalence, are now relatively well understood. However, their dynamical
evolution is more complex andmany aspects of it need to be improved and exploited in order to obtain explicit predictions.
A short historic of the early development of kinetic theory for plasmas, stellar systems, and other systems with long-range
interactions is presented in Refs. [3–5]. The main lines of this historic are recalled below, with some complements, in order
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to place our work in a general context. We show in particular how the necessity to develop a kinetic theory for spatially
inhomogeneous systems such as those considered in the present paper progressively emerged.

The first kinetic theory describing the statistical evolution of a large number of particles was developed by Boltzmann
for a dilute neutral gas [6]. In that case, the particles do not interact except during strong local collisions. The gas is spatially
homogeneous and the Boltzmann kinetic equation describes the evolution of the velocity distribution function f (v, t) of
the particles under the effect of strong collisions. It can be shown to satisfy a H-Theorem corresponding to an increase of
Boltzmann’s entropy.

Boltzmann’s kinetic theory was extended to charged gases (plasmas) by Landau [7]. In that case, the particles interact
via long-range Coulombian forces but, because of electroneutrality and Debye shielding [8,9], the interaction is screened
on a lengthscale of the order of the Debye length, so that the collisions are essentially local. A neutral plasma is spatially
homogeneous and the kinetic equation again describes the evolution of the velocity distribution function f (v, t) of the
charges under the effect of close encounters (electrostatic deflections). Since these encounters are weak, one can expand
the Boltzmann equation in the limit of small deflections and make a linear trajectory approximation. This leads to the so-
called Landau equation [7]which is valid in such aweak coupling approximation. The Landau equation exhibits a logarithmic
divergence at small scales due to the neglect of strong collisions (that are rare but that cannot be totally neglected) and a
logarithmic divergence at large scales due to the neglect of collective effects, i.e., the dressing of particles by their polarisation
cloud (because two like sign charges repel each other and two opposite charges attract each other, a particle of a given
charge has the tendency to be surrounded by a cloud of particles of opposite charge). Landau regularised these divergences
by introducing rather arbitrarily a lower cut-off at the impact parameter producing a deflection at 90° (Landau length)
and an upper cut-off at the Debye length. Collective effects were rigorously taken into account later by Balescu [10] and
Lenard [11], leading to the Balescu–Lenard equation. They showed that this equation is valid at the order 1/Λ, where Λ
is the plasma parameter (number of charges in the Debye sphere). The Balescu–Lenard equation is similar to the Landau
equation except that it includes the square of the dielectric function in the denominator of the potential of interaction (in
Fourier space). The dielectric function first appeared as a probe of the dynamical stability of plasmas based on the linearised
Vlasov equation [12,13]. In the Balescu–Lenard equation the dielectric function accounts for Debye shielding and removes
the logarithmic divergence at large scales present in the Landau equation. This amounts to replacing the bare potential
of interaction by a dressed potential of interaction. The Landau equation is recovered from the Balescu–Lenard equation by
replacing the dielectric function by unity, i.e., by neglecting collective effects. In addition to including the dielectric function,
the form of the kinetic equation given by Balescu and Lenard exhibits a local condition of resonance, encapsulated in a Dirac
δD-function. Resonant contributions are the drivers of diffusion on secular timescales (collisional evolution), as they do not
average out. When integrating over this condition of resonance, we recover the original form of the kinetic equation given
by Landau.

Self-gravitating systems are spatially inhomogeneous but the early kinetic theories pioneered by Jeans [14] and
Chandrasekhar [15–17] were based on the assumption that the collisions (close encounters) between stars can be treated
with a local approximation as if the systemwere infinite and homogeneous. Since a star experiences a large number of weak
deflections, Chandrasekhar [18] developed an analogy with Brownian motion. He started from the Fokker–Planck equation
and computed the diffusion and friction coefficients in a binary collision theory. This leads to a kinetic equation (usually
called the Fokker–Planck equation by astrophysicists) that is equivalent to the Landau equation.1 The gravitational Landau
equation exhibits a logarithmic divergence at small scales due to the neglect of strong collisions and a logarithmic divergence
at large scales due to the local approximation or to the assumption that the system is infinite and homogeneous. Strong
collisions are taken into account in the treatment of Chandrasekhar which shows, without having to introduce a cut-off, that
the small-scale divergence is regularised at the gravitational Landau length. The large-scale divergence is usually regularised
by introducing a cut-off at the Jeans lengthwhich is the gravitational analogue of the Debye length. The gravitational Landau
equation is often thought to be sufficient to describe the collisional dynamics of spherical stellar systems such as globular
clusters. However, the treatment based on the local approximation, or on the assumption that the system is infinite and
homogeneous, is not fully satisfactory since it leads to a logarithmic divergence. Furthermore, it prevents one from taking
into account collective effects, i.e., the dressing of stars by polarisation clouds (because of the gravitational attraction, a
star has the tendency to be surrounded by a cloud of stars which increases its effective gravitational mass and reduces
its collisional relaxation time). Indeed, if we naively take into account collective effects by introducing the gravitational
‘‘dielectric function’’ in the homogeneous Balescu–Lenard equation (with the sign −Gm2 instead of +e2) we get a strong,

1 The Landau equation only involves the square of the potential of interaction, so that it keeps the same form for Coulombian and gravitational
interactions, except for a change in the prefactor: (−e2)2 has to be replaced by (Gm2)2 . The kinetic equation derived by Chandrasekhar (see also Ref. [19]),
albeit physically equivalent to the Landau equation, did not appear under the samemathematical form because he started from the Fokker–Planck equation
∂t f = ∂vi∂vj (Dijf ) + ∂vi (F

fric
i f ) in which the diffusion tensor is placed after the two velocity derivatives, while the Landau equation can be viewed as

a Fokker–Planck equation ∂t f = ∂vi (Dij∂vj f ) + ∂vi (F
pol
i f ) where the diffusion tensor is placed between the two velocity derivatives. From this second

rewriting, Landau obtained a symmetric expression of the collision operator fromwhich one can directly deduce all the conservation laws of the system and
derive theH-theorem for the Boltzmann entropy. Furthermore, Landau derived simultaneously the diffusion and friction coefficients, while Chandrasekhar
obtained them from two different calculations and showed a posteriori that they were connected at equilibrium by the Einstein relation. Let us emphasise,
however, that the friction force F fric computed by Chandrasekhar is the true friction force while the friction force F pol appearing in the Landau equation is
the friction due to the polarisation [5].
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