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h i g h l i g h t s

• We develop the gauge theory of glass transition (GTGT).
• GTGT is applied to describe the dynamic heterogeneity in supercooled liquid.
• The dynamic susceptibility time dependence near the glass transition is obtained.
• The dynamic heterogeneity is driven by two types of relaxation process.
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a b s t r a c t

In this paper the phenomenon of dynamic heterogeneity in supercooled liquid systems is
considered in terms of the recently proposed gauge theory of glass transition. The physical
interpretation of the dynamic scaling is considered. It is shown that the development of
the dynamic heterogeneity occurs due to the growth areas in which molecular motion is
correlated due to the elastic interaction described by the gauge field. We obtain the analyt-
ical expressions for the dependence of the number of dynamically correlated atoms as the
function on the system relaxation time, and the time dependence of the dynamic suscep-
tibility near the glass transition. It is shown that the relaxation consists of two processes:
α-relaxation process corresponding to the joint motion of the domains disordered with
each other, and β-relaxation process corresponding to the motion inside these domains.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The problem of the theoretical description of the liquid–glass transition is still puzzling theorists. On one hand, this
transition has distinctive features of phase transition, such as critical slowing of the system, peak in the temperature
dependence of susceptibility, and abrupt change of the heat capacity near the transition. On the other hand, the non-
equilibrium dynamics of the process determines the physical properties of the glass system to a considerable degree. For
example, it leads to the dependence of the glass transition temperature on the cooling rate. The presence of these features
suggests that the theory,which aspires to the full description of the liquid–glass transition, should combine bothmethods for
describing the dynamics of nonequilibrium systems and the elements of the quasi-equilibrium theory of phase transitions.
This concept has been implemented in a recently proposed gauge theory of glass transition (GTGT) [1]. The theory is based on
the gauge approaches to glass description, which were offered at the end of the last century, [2–8], and is close ideologically
to the theory of glass transition by Kivelson [9]. At first sight this theory seems difficult because of the necessity to use the
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field-theoretic technique of gauge fields. However, the results of this theory reveal fairly clear physical mechanisms of the
glass transition, and allow us to clearly interpret virtually all experimentally observed properties of the glass transition.

GTGT is based on the methods of non-equilibrium dynamics, which provides a natural way to take into account the
dynamic properties of the nonequilibrium vitrescent system. Therefore, it is possible to expect that this theory will allow
us to move forward and describe dynamics of the glass transition. However, as of now not all features of the dynamics of
glass-forming systems have been described by this theory. In particular, the phenomenon of the dynamic heterogeneity of
the supercooled liquids has been scarcely described. The dynamic heterogeneity is difficult to detect by direct experimental
methods. It was discovered recently in computer modeling of the glass forming liquids and became one of the most popular
topics of discussion among experts in this field. This interest is explained by the fact that the dynamic heterogeneity is
considered as the expression of the fundamental mechanisms of the glass transition. Therefore, any adequate theory of
glass transition should explain this phenomenon. The purpose of this paper is to discuss the phenomenon of dynamic
heterogeneity in terms of GTGT.

2. Model formulation

Following propositions underlie GTGT: 1. It is assumed that the system is in the fluctuation region near the proposed
second order phase transition, i.e. fluctuations, which represent spontaneously occurring and collapsing ordered regions,
exist and amplify in the system; 2. It is assumed that the system is frustrated. The frustration, on the contrary, blocks the
growth of the above-mentioned fluctuations. As shown earlier, the imposition of these conditions results in the freezing of
the system in a disordered non-ergodic ‘‘solid’’ state, i.e. in the glass state [1,10].

Because we believe that at a certain temperature Tc in the system without frustration the second order phase transition
must occur, we describe the state of the ‘‘clean’’ system using the well-known Hamiltonian of the Ginzburg–Landau theory:

H0 =
1
2

 
(∂iQ)2 + Q2


µ2

+
1
2
vQ2


dr, (1)

where dr denotes the volume integration, dr = drxdrydrz , µ2
= α(T − Tc), α, and v is the system parameter. In the general

case one can represent tensorQ as a position-dependent orthonormal triad of unit vectorsQ(r) = [Q⃗1(r), Q⃗2(r), Q⃗3(r)] [6],
which is associated with the given local ordered structure, for example, with an icosahedron [6].

The differentia of the glasses is the frustration. The frustration availability implies invariance of the system Hamiltonian
with respect to local transformations, although this is not enough for the frustration of the system yet. An illustrative
example is demonstrated in Fig. 1, which shows the geometrical frustration, characteristic of the dense packing of the
particles with a spherically symmetric interaction potential. In this case the local ordered state corresponds to tetrahedral
packing, therefore the tensor of the local orientational order parameter is invariant with respect to the local rotations of the
icosahedron symmetry group, Y ⊂ O(3). It turns out that the Hamiltonian (1) is not invariant under such transformation,
the derivative in first term hampers this. Therefore, in order to keep the gauge invariance of the continuous model, one
has to move from the ordinary differentiation with respect to the spatial coordinates to the covariant differentiation:
∂iQlk → DiQlk = ∂iQlk + gεiabAlaQkb, where εiab is the rotation matrices, g is the topological charge, and Ala is the gauge
field which controls the rotations of Q in space. If y(r) is the matrices of the symmetry group Y , Q(r) → y(r)Q(r), then
εiabAla(r) = A(r) = y(r)A(r)y−1(r) − (∇y(r))y−1(r). In this case the Hamiltonian has the following gauge symmetric
form [8,10,11]:

H0 → Hsym =
1
2

 
(D⃗Q)2 + µ2


Q2

+
1
2
vQ4


+

1
2
F2

dr,

where Faµν = ∂µAaν − ∂νAaµ + gεabcAbµAcν . It is well known that the problem of the minimization of this Hamiltonian has
got the singular solutions (vortexes) which correspond to the disclinations in the ordered atomic structure. The presence of
these disclinations destroys the gauge invariance and can be described with sources J of the gauge field (Hsym → H ′):

H ′
=

1
2

 
(D⃗Q)2 + µ2


Q2

+
1
2
vQ4


+

1
2
F2 + JA


dr, (2)

where Ecor =

JAdr is the total energy of the disclinations cores. This value should be minimal for an equilibrium system,

therefore Ecor → 0 for the ideal systems with order parameter tensor having a crystallographic symmetry. Ecor ≠ 0 in the
case of systems contaminated by impurities. Also Ecor ≠ 0 when space cannot be continually filled by the atomic structure
with given symmetry of the order parameter tensor because of the topological reasons. In these cases the disclinations are
always present in the structure.

As it was noted above, the availability of the gauge symmetry is not enough for the frustration of the system. The system
is not frustrated until the gauge field is a smooth function. Frustration corresponds to the presence a singularity of the gauge
field, i.e. its source,which presents as the disclination in the atomic structure. The disclinations disorder the structure, and, in
general, aremobilewhen the system is in the liquid state. According to N. Rivier’s arguments [5,7] it is natural to assume that
at T > Tc , when the system is in the equilibrium liquid phase, the subsystem of the vortices is also in thermal equilibrium,
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