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h i g h l i g h t s

• The balance between irreducible randommovement and structuredmovement is reported for the correlated biased randomwalkmodel
with latency (CBRWL).
• The CBRWL in two dimensions is constructed from the orthogonal extension of the one dimensional model.
• The relation between drift velocity and tortuosity as a function of entropy density and excess entropy.
• Entropic measures allows to characterize the dynamics independently of the particular control variables.
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a b s t r a c t

The correlated biased random walk with latency in one and two dimensions is discussed
with regard to the portion of irreducible randommovement and structuredmovement. It is
shown how a quantitative analysis can be carried out by using computational mechanics.
The stochastic matrix for both dynamics are reported. Latency introduces new states in
the finite state machine description of the system in both dimensions, allowing for a full
nearest neighbor coordination in the two dimensional case. Complexity analysis is used
to characterize the movement, independently of the set of control parameters, making it
suitable for the discussion of other randomwalkmodels. The complexitymap of the system
dynamics is reported for the two dimensional case.

© 2016 Elsevier B.V. All rights reserved.

Dynamical systems can be seen as generating and storing information. In this sense, they can be described as symbols
generating computational machines. To know the extent that a given dynamical system is capable of such computing
capacity can be important if, for example, one intends to practically tune the control parameters of the system to take
advantage of its computing ability. Starting from Brownian motions, the randomwalk (RW) has been a much used model in
statistical physics and related fields to simulate the behavior of different physical systems [1,2]. Its ubiquitous nature, has
made it useful in the analysis of a broad number of situations beyond physics such as, biology, where it has been used to
model the movement from micro-organisms and insects to mammals [3] or, the diffusion of charges in solids [4].
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The classical discrete RW involves a stochastic movement of a given length in some arbitrary direction in d-dimensional
space. In what follows we will consider that the length of the step is constant over the whole walking process, and in
consequence, a fixed time is taken for each step. We will also consider a lattice space, which implies a discrete space over
which thewalkermovement is performed [5]. In itsmore simple case [5,6], at a given time, the choice ofmovement direction
is a random variable following a given probability distribution with no memory whatsoever of the previous movements.
Enlarging this model can be made in several ways. One choice is to introduce biased as a favored direction in space, while
correlation is considered when the choice of movement takes into account the previous movements of the walker (the
process has memory) [7]. Biased can be taken as a consequence of some driving force (e.g. a particular odor for a predator,
an external field for a charge moving inside a solid, etc.) The most simple form of correlation, usually called persistence, is
to consider, when choosing the next movement, the last step of the walker. Persistence then introduces a preference, that
the walker follows the previous movement as some kind of inertial effect [8].

A further variable in the movement can be introduced if the possibility that, at a given time, the walker decides to stay
at rest allowed [3]. The resulting RW will be said to have latency. Latency could be justified in a number of ways. One
could consider it to be a transitional state between change of movement direction, due to the impossibility of instantaneous
movement change. Yet, we will spare any rationale leading to latency and just consider it for its worth in enhancing the
possibilities of RWmodels. In particular, it will be shown that introducing latency in one dimensional RW, allows to go to a
two dimensional lattice RW in a simple manner while keeping full coordination of the movement.

In the analysis of RW, it has been usual to be interested in the statistical properties of the movement, such as the
probability distribution over distance as a function of time, from where the diffusion coefficient can be calculated. Other
questions have been the probability that the walker will return to a given point in space; the speed of the walker; the
probability of escaping the origin; among others [5,6,9]. Closely related to these questions, is to assert the balance between
unpredictable and structuredmovement in the RW, as a consequence of the competing effect of the control parameters. This
analysis can be carried out by coding the RW as a symbol producing system and then quantify the production of patterns
and irreducible randomness in the symbolic generator process. Viewed from this perspective, the RW can be considered as
a computational machine that sequentially generates an infinite string of symbols with certain degree of predictability and
certain degree of noise. Structure is then associated to the relation between somemagnitude characterizing the predictable
behavior and some magnitude characterizing the random part [10].

Computational mechanics is an approach to complexity based on reconstruction of the optimal computational machine,
termed ϵ-machine, within a hierarchy of machines that allows to discover the nature of patterns and to quantify them
[11,10]. It is rooted in information theory concepts, and has found applications in several areas [12–14]. Its use in statistical
mechanics has allowed to define and calculate magnitudes that complement thermodynamic quantities. Optimality is the
balance of having the best predictive power with less number of resources as reflected by the number of internal states [15].

For an ϵ-machine, the statistical complexity Cµ is defined as the Shannon entropy over the probability of the causal
states. A causal state is taken in its more general meaning, as a set of pasts that determines (probabilistically) equivalent
futures [16]. Cµ is a measure of the amount of knowledge or memory needed for optimal prediction. Another magnitude is
the entropy density, which measures the irreducible randomness of the system and is defined as the asymptotic value of
the Shannon block entropy over the generated sequence of symbols divided by the block length [17]. And finally, the excess
entropy, defined as the mutual information between past and future, which, in the case of a first order Markov process, can
be calculated by subtracting the entropy density from the statistical complexity. Excess entropy is the amount of memory
needed to make optimal predictions without taking into account the irreducible randomness [18].

In this article we will be interested in quantifying the unpredictable and predictable movement in a biased correlated
RWwith latency (CBRWL) in both one- and two-dimensions.

The paper is organized as follows: in Section 1, notions of computational mechanics are introduced for completeness. In
this section the mathematical definition of statistical entropy, entropy density and excess entropy are introduced. Section 2
describes the one dimensional RW as a symbol generating process. In Section 3 the two dimensional case is discussed as
an extension of the one dimensional walk in two orthogonal directions, this is followed in Section 4 by discussion and
conclusions.

1. Casual states, statistical complexity, entropy density and excess entropy

Computational mechanics relies on the concept of causal states [16]. Consider a process whose output is a bi-infinite
string or sequence, the characters of which are drawn from an alphabet Σ . Consider, for any particular realization of the
process, the output string ξ and partition the string in two half ξ− ≡ ξ(−∞,−1) and ξ+ ≡ ξ(0,∞) which are called past
and future, respectively. If the output strings are considered to be drawn from a (in general unknown) distribution, then
two ξ− and ξ ′− that give the same probability Pr(ξ+|ξ−) = Pr(ξ+|ξ ′−) for all possible futures ξ+, are said to belong to the
same causal state Cp that it is written ξ− ∼ ξ ′−(ξ−, ξ ′− ∈ Cp).

The partition of the set of possible pasts (denoted byΞ−), in classes of causal states, is an equivalence relation complying
with the transitivity condition (if ξ−i ∼ ξ−j and ξ−j ∼ ξ−k then ξ−i ∼ ξ−k ), symmetry (if ξ−i ∼ ξ−j then ξ−j ∼ ξ−i ) and
reflectivity (ξ−i ∼ ξ−i ). The set of causal state (denoted by C with cardinality |C|) uniquely determines the future of a
sequence. Then, function ϵ can be defined over ξ−, ϵ : Ξ− → C which relates ξ− with its causal states C ,

ϵ(ξ−) ≡ C = {ξ ′−|Pr(ξ+|ξ−) = Pr(ξ+|ξ ′−) ∀ξ+}.
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