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h i g h l i g h t s

• I first introduce the decomposition of quantum random walk operator by the help of quantum probability approach.
• We then propose the state decomposition of quantum random walk with the help of eigenvalue and eigenvector.
• As an application we then discuss the probability distribution for the quantum random walk on Cayley graph.
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a b s t r a c t

In the paper, A quantum decomposition (QD, for short) of random walk on Cayley graph
of finite group is introduced, which contains two cases. One is QD of quantum random
walk operator (QRWO, for short), another is QD of Quantum randomwalk state (QRWS, for
short). Using these findings, I finally obtain some applications for quantum random walk
(QRW, for short), which are of interest in the study of QRW, highlighting the role played by
QRWO and QRWS.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Throughout the paper I will restrict our study to discrete time QRW on Cayley graphs of finite group. The theory of QRW
on graphs is fundamental to mathematics, physics, and computer science [1,2], as it provides a beautiful mathematical
framework to study stochastic process and its applications. An appealing well-studied classical idea in statistics and
computer science is the method of QRW [3,4] or [5], which is the quantum analogue of classical random walks, has been
studied in a flurry of works. Some of these works studied the problem in the important context of algorithmic problems on
graphs and suggested that quantum walks is a promising algorithmic technique for designing future quantum algorithms.

With the quantum coin reflecting the graph structure, QRW may also be seen as a nice tool for classifying, or at least
describing the structure of Cayley graphs, groups and related objects. Several important classes of graphs studied in QRW
include the group-theoretic Cayley graphs, such as Cayley graph of Abelian group, Cayley graph of free group, Cayley graph
of cyclic group, and so on.

The main purpose of this paper is to show QD of QRWO and QRWS on Cayley graph of finite group. The QD of QRWO
includes QD of shift operator Ŝ and coin operator C , while the QD of QRWS is a type of state superpositions.

There are a lot of works about QRW on Cayley graphs of finite group (see Refs. [6–9]). And Cayley graphs capture strong
group-theoretic ingredients of important problems, such as Graph Isomorphism. Since most of these graphs are regular,
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the classical random walks (CRW, for short) on them are known to converge or to mix towards the uniform stationary
distribution. The mixing properties of continuous-time QRW on the same graphs were found to exhibit non-classical
behaviour [5,10–12].

Consider, for example, a free group over three generators, a, b, and c. The elements are uniquely described by words in
the alphabet A = {a, b, c, a−1, b−1, c−1

}. Define a map
A∗

→ A∗

which substitutes b for c and vice versa for words beginning with an a and leaves all other words intact. Such a map induces
a graph automorphism of the Cayley graph but is not a group automorphism itself.

On the contrary, an automorphism of a graph is a permutation of its vertices such that it leaves the graph unchanged.
The set of all such permutations is the automorphism group of the graph.

Taking advantage of these results we get some associated implemented results of Cayley graph and applications of QRW
on the Cayley graph over finite group.

The paper is organized as follows: In Section 2 we give a brief review of the main characteristic of Cayley graphs. In
Section 3 we introduce some basic notions and notations for QRW, see, e.g., Refs. [1–3,13–20], subsequently, we focus on
studying QD of QRWO and QRWS on Cayley graph of finite group. In Section 4 as two applications to limit distribution of
QRW and time averaged proability distribution of QRW.

2. Cayley graphs and its adjacency matrix

In this sectionwegive a brief outline of someof themain features of Cayley graphs, such as adjacencymatrix, stratification
and orthonormal basis of strata. In general, Cayley graphs are defined as follows:

Definition 2.1. Let G be a discrete group finitely generated by a set S. The Cayley graph Γ = Γ (G, S) is a directed graph
(G, E), where the set of vertices is identified with the set of elements of G and the set of edges is

E = {(g, s)|g ∈ G, s ∈ S, gs−1
∈ S}.

Lemma 2.2 ([19]). A Cayley graph (G, E) is regular with degree 2N.

Example 2.3. The added group GN furnished with the standard generators

g±1 = (±1, 0, . . . , 0), . . . , g±N = (0, 0, . . . ,±1),

is the N-dimensional integer lattice with the degree 2N .

Example 2.4. Let GN be the free group with N free generators g1, . . . , gN . We write g−i = g−1
i for simplicity. The Cayley

graph (GN , {g±1, . . . , g±N}) is a homogeneous tree with degree 2N . In particular, a homogeneous tree with degree two is
one-dimensional integer lattice.

A Cayley graph is a pair Γ = (V , E)where V is a non-empty set and E is a subset of {(i, j); i, j ∈ V , i ≠ j}. Elements of V
and of E are called vertices and edges, respectively. Two vertices i; j ∈ V are called adjacent if (i, j) ∈ E, and in that case we
write i ∼ j. For a Cayley graph Γ = (V , E)we define the adjacency matrix A = (Aij)i,j∈V by

Ai,j :=


1, if i ∼ j,
0, otherwise. (2.1)

Obviously, (i) A is symmetric; (ii) an element of A takes a value in {0, 1}; (iii) a diagonal element of A vanishes. Conversely,
for a non-empty set V , a graph structure is uniquely determined by such a matrix indexed by V .

The degree or valency of a vertex i ∈ V is defined by
k(i) = |{j ∈ V ; i ∼ j}|, (2.2)

where | · | denotes the cardinality. A finite sequence i0; i1; . . . ; in ∈ V is called a walk of length n (or of n steps) if ik−1 ∼ ik
for all k = 1, 2, . . . , n. In a walk some vertices may occur repeatedly. Unless otherwise stated, we always assume that a
graph under discussion satisfies:
(a) (connectedness) any pair of distinct vertices is connected by a walk;
(b) (local boundedness) k(i) < ∞ for all i ∈ V ; In fact, the examples in this paper satisfy the following condition which is

stronger than (b):
(b′) (uniform boundedness) supi∈V k(i) < ∞.

Suppose that l2(V ) denotes the Hilbert space of C-valued square-summable functions on V , and {|i⟩; i ∈ V } becomes a
complete orthonormal basis of l2(V ). The adjacency matrix is considered as an operator acting in l2(V ) in such a way that

A|i⟩ =


i∼j

|j⟩, i ∈ V . (2.3)

Then, A becomes a self-adjoint operator equipped with a natural domain. As is easily checked, ‘‘(b′)’’ is a necessary and
sufficient condition for A to be a bounded operator on l2(V ).
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