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h i g h l i g h t s

• The quasiparticle system in the BCS model is shown to form a Fermi liquid (FL).
• The BCS FL is transformed into an ideal gas by redefining the quasiparticles.
• The new quasiparticles obey fractional exclusion statistics (FES).
• We calculate the FES parameters and verify the consistency of the model.
• A repulsive interaction between quasiparticles stabilizes the BCS condensate.
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a b s t r a c t

The effective energy of a superconductor Eeff (T ) at temperature T is defined as the
difference between the total energy at temperature T and the total energy at 0K.We call the
energy of the condensate, Ec , the difference between Eeff and the sum of the quasiparticle
energies Eqp. Ec , Eqp, as well as the BCS quasiparticle energy ϵ are positive and depend on
the gap energy ∆, which, in turn, depends on the populations of the quasiparticle states
(equivalently, they depend on T ). So, from the energetic point of view, the superconductor
is a Fermi liquid of interacting quasiparticles.

We show that the choice of quasiparticles is not unique, but there is an infinite range of
possibilities. Some of these possibilities have been explored in the context of the fractional
exclusion statistics (FES), which is a general method of describing interacting particle
systems as ideal gases.We apply FES here and transform the Fermi liquid of BCS excitations
into an ideal gas by redefining the quasiparticle energies. The new FES quasiparticles
exhibit the same energy gap as the BCS quasiparticles, but a different DOS, which is finite
at any quasiparticle energy.

We also discuss the effect of the remnant electron–electron interaction (elec-
tron–electron interaction beyond the BCS pairing model) and show that this can stabilize
the BCS condensate, increasing the critical temperature.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We divide the energy of a BCS superconductor [1] into three parts: the ground-state energy Egs, the condensate energy
Ec , and the energy of the quasiparticles Eqp. Egs is a constant and represents the total energy of the superconductor at
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temperature T = 0, Eqp is the sum of the excitations’ quasiparticle energies, whereas the condensate energy is the difference
Ec ≡ E − Egs − Eqp. Ec vanishes at T = 0 and increases monotonically with T , reaching its highest value at the critical
temperature Tc , where the superconducting state disappears. Effectively, the energy of the system-after removing the
constant term Egs-is Eeff ≡ Ec + Eqp. Due to the fact that both, Ec and the BCS quasiparticle energies ϵ, depend on the
populations of the quasiparticle states {nϵ}, Eeff represents the energy of a Fermi liquid (FL) [2,3] and ϵ ≡ ∂Eeff/∂nϵ .

In the context of fractional exclusion statistics (FES) [4–6] it has been shown that the quasiparticle energies may be
redefined (see e.g. Refs. [7–18]). There is an infinite range of possibilities in which one can redistribute the energy of the
system among the quasiparticle states. Moreover, if the choice is made such that the total (or the effective) energy of the
system is equal to the sum of the quasiparticle energies, then one obtains a description of the system in terms of an ideal
FES gas [17]. All the choices of quasiparticle energies must lead to thermodynamically equivalent descriptions, in the sense
that the populations of the quasiparticle states and all the macroscopic thermodynamic quantities should not depend on
the chosen description [17,18]. We exemplify the procedure by redefining the quasiparticle in such a way that Eeff becomes
the sum of the new quasiparticle energies ϵ̃. This relation holds for any quasiparticle levels populations, so the system
obtained is an ideal gas. In our example, the quasiparticle energy spectrum exhibits the same energy gap ∆ as that of the
BCS quasiparticles, but the density of states (DOS) σ̃ (ϵ̃) is finite over the whole spectrum (including at ϵ̃ = ∆).

We also extend the BCS model by including an extra interaction between the electrons as a perturbation to the initial
pairing Hamiltonian. This leads to an interaction term between the quasiparticles which modifies the energy gap and the
quasiparticle energies. The gap equation cannot be satisfied anymore for ∆ = 0 at any temperature, so, in the first order of
perturbation, the extra interaction does not allow the superconducting phase to be destroyed.

The paper is organized as follows. In the next subsection we introduce the notations and the basic concepts of the BCS
theory. We shall use mainly the notations of Ref. [19] which are somewhat different from the notations of Ref. [1]. Then, in
Section 2, wewrite the effective energy of the system as the energy of a Fermi liquid (FL), with the BCS quasiparticle energies
equal to the Landau’s quasiparticle energy of the FL. The FES description is presented in Section 3, where we introduce the
FES quasiparticle energies, the FES parameters, andwewrite the FES equations for the population.We also show that the FES
and FL descriptions are physically equivalent. In Section 4 we extend the BCS model by introducing the interaction between
the quasiparticles. In Section 5 we present the conclusions.

1.1. The basics of the theory of superconductivity

Let us specify notations and the basic ideas of the BCS theory, followingmainly Refs. [19,1].We denote the single-particle
states of the electrons in the superconductor by |k, s⟩ and its time reversed state by | − k, −s⟩; s is the spin and k repre-
sents the rest of single-particle quantum numbers that specify the state-concretely, we shall consider that k is the free
electron wavevector. The electrons creation and annihilation operators are cĎk,s and ck,s, respectively, and the BCS pairing
Hamiltonian is

HBCS =


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ϵ
(0)
k nkσ +
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where ϵ
(0)
k are the energies of the non-interacting single-particle states and Vkl are the matrix elements of the attractive

effective interaction potential. The ground state will be denoted by |BCS⟩0. The Hamiltonian (1) is diagonalized by the Bo-
goliubov transformations, by writing c−k↓ck↑ ≡ bk + (c−k↓ck↑ −bk), where bk = ⟨c−k↓ck↑⟩, and assuming that c−k↓ck↑ −bk
is small (⟨·⟩ is the average). Then HBCS is expanded in terms of c−k↓ck↑ − bk and keeping only the first order we get
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We define the model Hamiltonian HM = H − µN , which can be diagonalized to become [19]
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where ξk ≡ ϵ
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k − µ, ϵk ≡
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k and ∆k is the energy gap,

∆k = −
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Vkl⟨c−l↓cl↑⟩. (4)

The operators γ
Ď
ki and γki (i = 0, 1) are quasiparticle creation and annihilation operators, respectively (as defined in

Ref. [19]), and are defined by the relations
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