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h i g h l i g h t s

• Pattern formation in bacterial populations.
• Mobility of bacteria and diffusive processes.
• A decrease of bacterial motility with density can promote separation into bulk phases of two coexisting densities.
• The singularity of the scalar curvature as instability criterion for nonequilibrium systems.
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a b s t r a c t

In the geometry associated with equilibrium thermodynamics the scalar curvature Rs is a
measure of the volume of correlation, and therefore the singularities of Rs indicates the
system instabilities. We explore the use of a similar approach to study instabilities in non-
equilibrium systems andwe choose as a test example, a colony of bacteria. In this regardwe
follow the proposal made by Obata et al. of using the curvature tensor for studying system
instabilities. Bacterial colonies are often found in nature in concentrated biofilms, or other
colony types, which can grow into spectacular patterns visible under the microscope. For
instance, it is known that a decrease of bacterial motility with density can promote sepa-
ration into bulk phases of two coexisting densities; this is opposed to the logistic law for
birth and death that allows only a single uniform density to be stable. Although this ho-
mogeneous configuration is stable in the absence of bacterial interactions, without logistic
growth, a density-dependent swim speed v(ρ) leads to phase separation via a spinodal
instability. Thus we relate the singularities in the curvature tensor R to the spinodal insta-
bility, that is the appearance of regions of different densities of bacteria.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the laboratory, bacteria such as Escherichia coli and Salmonella typhimurium form regular geometric patterns when
they reproduce and grow on a Petri dish containing a gel such as agar. These patterns range from simple concentric rings
to elaborate ordered or amorphous arrangements of dots [1,2]. Their formation results from collective behavior driven by
interactions between the bacteria, such as chemotactic aggregation [3], competition for food [4] or changes in phenotypes
according to density [5]. The question as to whether general mechanisms lie behind this diversity of microscopic pathways
to patterning remains open.

Although in principle one would like a similarly detailed mechanism for each system in which such patterns can form, it
is also important to ask whether more general explanations can be found by studying the process at a coarse-grained level.
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This does not abandon the search for a mechanism, but aims to subsume the complex, system-specific microscopic details
into a small number of effective parameters that control the macroscopic behavior.

We follow a description on intermediate scales between themicroscopic dynamics of bacteria and themacroscopic scale
of the patterns. In effect we are ‘‘averaging out’’ all specific microscopic aspects, such as the motion of chemoattractants or
steric interactions, and retaining only a coarse-grained dependence of the bacterial motility on density. Here we focus on
the net effect of all such interactions on the swim speed v(ρ), which we assume to decrease with density ρ.

The logistic population dynamics alone would cause a bacterial density evolution toward a uniform one, ρ(r) = ρ0 (r
represents the position). Although this homogeneous configuration is stable in the absence of bacterial interactions without
logistic growth, a density-dependent swim speed v(ρ) leads to phase separation via a spinodal instability [6]. That is, the
system is separated into a bacteria-rich and a bacteria-poor phase. We use the term ‘‘spinodal’’ due to the similarity with
binary decomposition of immiscible fluids.

Furthermore, the Riemanngeometry of the state of thermodynamics parameters has beenused to studyphase transitions,
particularly through the visualization of the singularities of the scalar curvature Rs [7]. In this sense, the method of
Riemann geometry is fruitful in equilibrium thermodynamics andwe expect that differential–geometrical methods become
important in non-equilibrium processes. Following this, we think the problem of mobility as a diffusive process with an
effective diffusion coefficient De(ρ). With effective diffusion coefficient we mean that the process can still be described
by a classical diffusion equation. This effective coefficient has two contributions, D(ρ) due to Brownian motion and D(ρ)
associated to the mobility of the bacteria [8].

Considering the problem as a diffusive process in the regime without logistic growth, and following the work of Obata
et al. [9], we can construct a two-dimensionalmanifold characterized by coordinates (µ, σ ), where σ is now associatedwith
effective diffusion coefficient De(ρ). Under these assumptions, we study the non-equilibrium instabilities and find that our
results are consistent with those found by other authors [8].

This workwill be ordered as follows. Section 2 is split into three parts, the first onewill be devoted to a brief presentation
of general aspects of statistical differential manifolds. In the second one, we will study the particular case of the diffusion
process, and the last one, we will analyze the mobility in the context of a diffusive process. In Section 3, we will present our
conclusions.

2. Diffusion and two-dimensional manifold

In Part A of this section, we briefly review the information geometrical theory [10] that is used to geometrically analyze
a family of probability density functions (PDF) for its application to non-equilibrium processes. In Part 2.2, we will connect
the geometric aspects to the problem of diffusion. Finally, Part 2.3 will be dedicated to discussion of the problem of mobility
in terms of an effective diffusion coefficient.

2.1. General aspects on statistical manifold

Let p (x, θ) be a PDF described by a random variable x and parameters θ =

θ1, θ2, . . . , θn


that characterize a system.

A set of PDFs

S =

p (x, θ) , θ ∈ Ω ⊂ Rn (1)

becomes an n-dimensional statistical manifold having θ i coordinates. According to information geometrical theory, we can
make a metric tensor gik(θ):

gik(θ) = E [∂il(x, θ)∂kl(x, θ)] = −E [∂i∂kl(x, θ)] (2)

where l(x, θ) = ln p(x, θ) and E[·] means the expectation operation with respect to p(x, θ).
The Christoffel connection coefficients are given by

Γijk(θ) =
1
2


∂kgij(θ) + ∂jgik(θ) − ∂igjk(θ)


. (3)

The curvature tensor R gives a measure of the curvature of the manifold. In the case R = 0, the manifold is said to be flat.
In this sense, the covariant component Rijkl plays an important role in the analysis of the curvature of the manifold:

Rijkl = gimRm
jkl

= ∂kΓijl − ∂lΓijk − ΓmikΓ
m
jl + ΓmilΓ

m
jk (4)

with

Γ i
jk =

1
2
g li ∂kglj + ∂jglk − ∂lgjk


(5)

and

Γ l
ij = Γijkg lk (6)

where g ij denotes the inverse of the metric tensor gij.
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