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h i g h l i g h t s

• Weighted polygon Koch networks with a weight factor are presented.
• Multi-layered division method is used to divide the weighted polygon Koch networks.
• Average receiving time is affected by the weight factor.
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a b s t r a c t

Based on theweightedKochnetworks and the self-similarity of fractals,wepresent a family
of weighted polygon Koch networks with a weight factor r (0 < r ≤ 1). We study the
average receiving time (ART) on weight-dependent walk (i.e., the walker moves to any
of its neighbors with probability proportional to the weight of edge linking them), whose
key step is to calculate the sum of mean first-passage times (MFPTs) for all nodes absorpt
at a hub node. We use a recursive division method to divide the weighted polygon Koch
networks in order to calculate the ART scaling more conveniently. We show that the ART
scaling exhibits a sublinear or linear dependence on network order. Thus, the weighted
polygon Koch networks are more efficient than expended Koch networks in receiving
information. Finally, compared with other previous studies’ results (i.e., Koch networks,
weighted Koch networks), we find out that our models are more general.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the past decade, since many systems in the real world can be described and characterized by complex networks [1–3],
complex networks have become a powerful and common tool. Besides, fractals are an important concept characterizing the
features of real systems [4], because they can model a broad range of objects in nature and society [5].

It has attracted a surge of interest from the scientific community that fractal structures are converted into complex
networks [6]. Xi et al. obtain the asymptotic formula for average path length of the Sierpinski gasket constructed by a new
method [7]. They also introduce multiple hubs based on scale-free and small-world networks and present the trapping
problem on them [8,9]. Zhang et al. proposed Koch networks based on Koch snowflake [10–13]. They presented some key
properties, such as degree correlations, a high clustering coefficient, small average path length and power-law distribution.
And they investigated randomwalks with an immobile trap fixed at a hub nodewith the highest degree performing on Koch
networks [14,15]. For the pseudofractal scale-free web, they also study analytically the related first passage properties [16].
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Fig. 1. Construction method of the weighted polygon Koch network. The open circle and triangles represent Node i (i = 1, 2, . . . , n) of G(t) and
ai,1, . . . , ai,m (i = 1, 2, . . . , n) of Gi

j(t) (j = 1, 2, . . . ,m), respectively. (a) Casem = 1. (b) Casem > 1.

Enlightened by Koch networks, there are many expanded works [17–22]. For example, Zhang et al. [17–19] studied the
generalized Koch networks and transformed the initial state of the Koch network from a triangle to an n-polygon. They
investigated the random walks and the trapping on the generalized Koch networks and obtained the exact solution of the
MFPT, which shows that the MFPT grows linearly with the increasing order of the networks, and the MFPT increases with
network parameter n [19]. These above papers are based on unweighted networks, i.e., edges among nodes are either present
or absent, represented as binary states. In fact, as we know, many networks are intrinsically weighted. Weighted networks
represent the natural framework to describe natural, social, and technological systems, inwhich the intensity of a relation or
the traffic between elements is an important parameter [23]. In general terms,weighted networks are extension of networks
or graphs [1,24,25], in which each edge between nodes i and j is associated with a variable wij, called the weight. Taking the
airport networks [26] for example, the number of passengers can directly image the status of airlines. Similarly, in Internet
networks [27], the load of information traffic along edges or through routers can reflect the importance of edges or routers
in traffic transportation. The heterogeneity of weights affects dynamical processes taking place on a network, which include
randomwalk [28], and so on. It is, thus, of theoretical and practical interests to construct weighted networks and investigate
random walks on them.

Diffusion is a key element of a large set of phenomena occurring on natural and social systems modeled in terms of
weighted complex networks. Assuming that the diffusion process is local, there are three most general kinds of random
walks: random walk, weigh-dependent walk and strength-dependent walk. A random walker may choose one of its
neighboring edges at the same probability (random walk). In weighted networks, however, the walker will choose an edge
according to its weight or the strength of the node connected by it, i.e. weight-dependent walk or strength-dependent walk.
The average receiving time (ART) is the sum of mean first-passage times (MFPTs) for all nodes absorpt at the trap located
at a hub node. In 2012, Dai et al. [29,30] proposed a family of weighted Koch networks and discussed the average receiving
time and the average weighted shortest path.

Motivated by the generalized Koch networks [17,18] and the weighted Koch networks [29,30], we firstly construct the
weighted polygon Koch networks. The mean first-passing time (MFPT) is the expected first arriving time for the walks
starting from a source node to a given target node. In the weighted n-polygon Koch networks, n hub nodes are successively
labeled as Node i (i = 1, 2, . . . , n). We arbitrarily choose one of n hub nodes as the trap, i.e., Node 1. Let Fi(t) be the MFPTs
from Node i (i = 2, 3, . . . , n) to the trap. In the weighted triangle Koch networks (n = 3), the MFPTs from other two
hub nodes to the trap are the same because of their equal status. However, when n ≥ 4 in the weighted n-polygon Koch
networks, Fi(t) changes with relative location of Node i (i = 2, 3, . . . , n) against to the trap. Then, we study the average
receiving time (ART) on weight-dependent walk in order to discuss the efficiency of a hub node receiving information on
them. We use recursive division method to divide the weighted polygon Koch networks in order to calculate the average
receiving time (ART) on weight-dependent walk conveniently. The obtained result shows that the efficiency of hub node
receiving information is affected by the weight factor.

2. The weighted polygon Koch networks

This section mainly describes the construction of the weighted polygon Koch networks. Based on the generalized Koch
networks [17–19] and the weighted Koch networks [29,30], we built the weighted polygon Koch networks in an iterative
way. A positive real number 0 < r ≤ 1 is needed.

Let G(t) be the weighted polygon Koch networks of the tth generation. Then, the weighted polygon Koch networks can
be created in the following way (see Fig. 1): Initially (t = 0), G(0) consists of n (n ≥ 3) nodes and n edges with unit weight
forming an n-polygon, where the initial n node in G(0) are labeled as Node i (i = 1, 2, . . . , n). For t ≥ 1, G(t + 1) may be
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